Generating Function for Fibonacci Numbers

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\map G z$ be the function defined as:

$\map G z = \dfrac z {1 - z - z^2}$


Then $\map G z$ is a generating function for the Fibonacci numbers.


Proof

Let the form of $\map G z$ be assumed as:

\(\ds \map G z\) \(=\) \(\ds \sum_{k \mathop \ge 0} F_k z^k\)
\(\ds \) \(=\) \(\ds F_0 + F_1 z + F_2 z^2 + F_3 z^3 + F_4 z^4 + \cdots\)
\(\ds \) \(=\) \(\ds 0 + z + z^2 + 2 z^3 + 3 z^4 + \cdots\)

where $F_n$ denotes the $n$th Fibonacci number.


Then:

\(\ds z \map G z\) \(=\) \(\ds F_0 z + F_1 z^2 + F_2 z^3 + F_3 z^4 + F_4 z^5 + \cdots\)
\(\ds z^2 \map G z\) \(=\) \(\ds F_0 z^2 + F_1 z^3 + F_2 z^4 + F_3 z^5 + F_4 z^6 + \cdots\)


and so:

\(\ds \paren {1 - z - z^2} \map G z\) \(=\) \(\ds F_0 + \paren {F_1 - F_0} z + \paren {F_2 - F_1 - F_0} z^2 + \paren {F_3 - F_2 - F_1} z^3 + \cdots\)
\(\ds \) \(=\) \(\ds F_0 + \paren {F_1 - F_0} z\) Definition of Fibonacci Number: $F_n = F_{n - 1} + F_{n - 2}$
\(\ds \) \(=\) \(\ds z\) Definition of Fibonacci Number: $F_0 = 0, F_1 = 1$

Hence the result:

$\map G z = \dfrac z {1 - z - z^2}$

$\blacksquare$


Sources