Generating Function for mth Terms of Sequence/Proof
Jump to navigation
Jump to search
Theorem
Let $G \left({z}\right)$ be the generating function for the sequence $\left\langle{a_n}\right\rangle$.
Let $m \in \Z_{>0}$ be a (strictly) positive integer.
Let $\omega = e^{2 i \pi / m} = \cos \dfrac {2 \pi} m + i \sin \dfrac {2 \pi} m$.
Then for $r \in \Z$ such that $0 \le r < m$:
- $\displaystyle \sum_{n \bmod m \mathop = r} a_n z^n = \dfrac 1 m \sum_{0 \mathop \le k \mathop < m} \omega^{-k r} G \left({\omega^k z}\right)$
Proof
\(\ds \omega^{-k r} G \left({\omega^k z}\right)\) | \(=\) | \(\ds \sum_{j \mathop \ge 0} a_j \omega^{k \left({j - r}\right)} z^j\) | Definition of Generating Function | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 1 m \, \sum_{0 \mathop \le k \mathop < m} \omega^{-k r} G \left({\omega^k z}\right)\) | \(=\) | \(\ds \dfrac 1 m \, \sum_{0 \mathop \le k \mathop < m} \,\, \sum_{j \mathop \ge 0} a_j \omega^{k \left({j - r}\right)} z^j\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac 1 m \sum_{j \mathop \ge 0} a_j z^j \,\, \sum_{0 \mathop \le k \mathop < m} \omega^{k \left({j - r}\right)}\) |
By definition of $\omega$:
- $\omega = \exp \dfrac {2 \pi i} m \implies \omega^m = 1$
and so:
\(\ds \sum_{0 \mathop \le k \mathop < m} \omega^{k \left({j - r}\right)}\) | \(=\) | \(\ds \begin{cases} \dfrac {1 - \omega^{m \left({j - r}\right)} } {1 - \omega^{j - r} } & : j - r \not \equiv 0 \pmod m \\ m & : j \equiv r \pmod m \end{cases}\) | Sum of Geometric Progression | |||||||||||
\(\ds \leadsto \ \ \) | \(\ds \dfrac 1 m \sum_{0 \mathop \le k \mathop < m} \omega^{-k r} G \left({\omega^k z}\right)\) | \(=\) | \(\ds \dfrac 1 m \sum_{j \mathop \ge 0} m a_j \left[{j \equiv r \pmod m}\right] z^j\) | where $\left[{\cdots}\right]$ is Iverson's convention | ||||||||||
\(\ds \) | \(=\) | \(\ds \sum_{n \bmod m \mathop = r} a_n z^n\) |
$\blacksquare$
Sources
- 1997: Donald E. Knuth: The Art of Computer Programming: Volume 1: Fundamental Algorithms (3rd ed.) ... (previous) ... (next): $\S 1.2.9$: Generating Functions: Exercise $14$