Gradient Operator Distributes over Addition

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf V$ be a vector space of $n$ dimensions.

Let $\tuple {\mathbf e_1, \mathbf e_2, \ldots, \mathbf e_n}$ be the standard ordered basis of $\mathbf V$.

Let $\map f {x_1, x_2, \ldots, x_n}, \map g {x_1, x_2, \ldots, x_n}: \mathbf V \to \R$ be differentiable real-valued functions on $\mathbf V$.

Let $\nabla f$ denote the gradient of $f$.


Then:

$\nabla \paren {f + g} = \nabla f + \nabla g$


Proof

\(\ds \nabla \paren {f + g}\) \(=\) \(\ds \sum_{k \mathop = 1}^n \frac {\partial \paren {f + g} } {\partial x_k} \mathbf e_k\) Definition of Gradient Operator
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^n \paren {\frac {\partial f} {\partial x_k} \mathbf e_k + \frac {\partial g} {\partial x_k} \mathbf e_k}\) Linear Combination of Partial Derivatives
\(\ds \) \(=\) \(\ds \sum_{k \mathop = 1}^n \frac {\partial f} {\partial x_k} \mathbf e_k + \sum_{k \mathop = 1}^n \frac {\partial g} {\partial x_k} \mathbf e_k\) Sum of Summations equals Summation of Sum
\(\ds \) \(=\) \(\ds \nabla f + \nabla g\) Definition of Gradient Operator

$\blacksquare$


Sources