Gradient of Dot Product
Jump to navigation
Jump to search
Definition
Let $\map {\R^3} {x, y, z}$ denote the real Cartesian space of $3$ dimensions..
Let $\tuple {\mathbf i, \mathbf j, \mathbf k}$ be the standard ordered basis on $\R^3$.
Let $\mathbf f$ and $\mathbf g: \R^3 \to \R^3$ be vector-valued functions on $\R^3$:
- $\mathbf f := \tuple {\map {f_x} {\mathbf x}, \map {f_y} {\mathbf x}, \map {f_z} {\mathbf x} }$
- $\mathbf g := \tuple {\map {g_x} {\mathbf x}, \map {g_y} {\mathbf x}, \map {g_z} {\mathbf x} }$
Let $\nabla \mathbf f$ denote the gradient of $f$.
Then:
- $\map \nabla {\mathbf f \cdot \mathbf g} = \paren {\mathbf g \cdot \nabla} \mathbf f + \paren {\mathbf f \cdot \nabla} \mathbf g + \mathbf g \times \paren {\nabla \times \mathbf f} + \mathbf f \times \paren {\nabla \times \mathbf g}$
where:
- $\mathbf f \times \mathbf g$ denotes vector cross product
- $\mathbf f \cdot \mathbf g$ denotes dot product
Proof
\(\ds \map \nabla {\mathbf f \cdot \mathbf g}\) | \(=\) | \(\ds \map \nabla {f_x g_x + f_y g_y + f_z g_z}\) | Definition of Dot Product | |||||||||||
\(\ds \) | \(=\) | \(\ds \dfrac {\map \partial {f_x g_x + f_y g_y + f_z g_z} } {\partial x} \mathbf i + \dfrac {\map \partial {f_x g_x + f_y g_y + f_z g_z} } {\partial y} \mathbf j + \dfrac {\map \partial {f_x g_x + f_y g_y + f_z g_z} } {\partial z} \mathbf k\) | Definition of Gradient Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial x} + \dfrac {\partial f_x} {\partial x} g_x + f_y \dfrac {\partial g_y} {\partial x} + \dfrac {\partial f_y} {\partial x} g_y + f_z \dfrac {\partial g_z} {\partial x} + \dfrac {\partial f_z} {\partial x} g_z} \mathbf i\) | Product Rule for Derivatives | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial y} + \dfrac {\partial f_x} {\partial y} g_x + f_y \dfrac {\partial g_y} {\partial y} + \dfrac {\partial f_y} {\partial y} g_y + f_z \dfrac {\partial g_z} {\partial y} + \dfrac {\partial f_z} {\partial y} g_z} \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial z} + \dfrac {\partial f_x} {\partial z} g_x + f_y \dfrac {\partial g_y} {\partial z} + \dfrac {\partial f_y} {\partial z} g_y + f_z \dfrac {\partial g_z} {\partial z} + \dfrac {\partial f_z} {\partial z} g_z} \mathbf k\) |
Then:
\(\ds \mathbf g \times \paren {\nabla \times \mathbf f}\) | \(=\) | \(\ds \mathbf g \times \paren {\paren {\dfrac {\partial f_z} {\partial y} - \dfrac {\partial f_y} {\partial z} } \mathbf i + \paren {\dfrac {\partial f_x} {\partial z} - \dfrac {\partial f_z} {\partial x} } \mathbf j + \paren {\dfrac {\partial f_y} {\partial x} - \dfrac {\partial f_x} {\partial y} } \mathbf k}\) | Definition of Curl Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\map {g_y} {\dfrac {\partial f_y} {\partial x} - \dfrac {\partial f_x} {\partial y} } - \map {g_z} {\dfrac {\partial f_x} {\partial z} - \dfrac {\partial f_z} {\partial x} } } \mathbf i\) | Definition 1 of Vector Cross Product | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\map {g_z} {\dfrac {\partial f_z} {\partial y} - \dfrac {\partial f_y} {\partial z} } - \map {g_x} {\dfrac {\partial f_y} {\partial x} - \dfrac {\partial f_x} {\partial y} } } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\map {g_x} {\dfrac {\partial f_x} {\partial z} - \dfrac {\partial f_z} {\partial x} } - \map {g_y} {\dfrac {\partial f_z} {\partial y} - \dfrac {\partial f_y} {\partial z} } } \mathbf k\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {g_y \dfrac {\partial f_y} {\partial x} - g_y \dfrac {\partial f_x} {\partial y} - g_z \dfrac {\partial f_x} {\partial z} + g_z \dfrac {\partial f_z} {\partial x} } \mathbf i\) | expanding | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_z \dfrac {\partial f_z} {\partial y} - g_z \dfrac {\partial f_y} {\partial z} - g_x \dfrac {\partial f_y} {\partial x} + g_x \dfrac {\partial f_x} {\partial y} } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {g_x \dfrac {\partial f_x} {\partial z} - g_x \dfrac {\partial f_z} {\partial x} - g_y \dfrac {\partial f_z} {\partial y} + g_y \dfrac {\partial f_y} {\partial z} } \mathbf k\) |
and similarly:
\(\ds \mathbf f \times \paren {\nabla \times \mathbf g}\) | \(=\) | \(\ds \mathbf f \times \paren {\paren {\dfrac {\partial g_z} {\partial y} - \dfrac {\partial g_y} {\partial z} } \mathbf i + \paren {\dfrac {\partial g_x} {\partial z} - \dfrac {\partial g_z} {\partial x} } \mathbf j + \paren {\dfrac {\partial g_y} {\partial x} - \dfrac {\partial g_x} {\partial y} } \mathbf k}\) | Definition of Curl Operator | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\map {f_y} {\dfrac {\partial g_y} {\partial x} - \dfrac {\partial g_x} {\partial y} } - \map {f_z} {\dfrac {\partial g_x} {\partial z} - \dfrac {\partial g_z} {\partial x} } } \mathbf i\) | Definition 1 of Vector Cross Product | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\map {f_z} {\dfrac {\partial g_z} {\partial y} - \dfrac {\partial g_y} {\partial z} } - \map {f_x} {\dfrac {\partial g_y} {\partial x} - \dfrac {\partial g_x} {\partial y} } } \mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {\map {f_x} {\dfrac {\partial g_x} {\partial z} - \dfrac {\partial g_z} {\partial x} } - \map {f_y} {\dfrac {\partial g_z} {\partial y} - \dfrac {\partial g_y} {\partial z} } } \mathbf k\) | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {f_y \dfrac {\partial g_y} {\partial x} - f_y \dfrac {\partial g_x} {\partial y} - f_z \dfrac {\partial g_x} {\partial z} + f_z \dfrac {\partial g_z} {\partial x} } \mathbf i\) | expanding | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_z \dfrac {\partial g_z} {\partial y} - f_z \dfrac {\partial g_y} {\partial z} - f_x \dfrac {\partial g_y} {\partial x} + f_x \dfrac {\partial g_x} {\partial y} }\mathbf j\) | |||||||||||
\(\ds \) | \(\) | \(\, \ds + \, \) | \(\ds \paren {f_x \dfrac {\partial g_x} {\partial z} - f_x \dfrac {\partial g_z} {\partial x} - f_y \dfrac {\partial g_z} {\partial y} + f_y \dfrac {\partial g_y} {\partial z} } \mathbf k\) |
Next:
\(\ds \paren {\mathbf g \cdot \nabla} \mathbf f\) | \(=\) | \(\ds \paren {g_x \dfrac \partial {\partial x} + g_y \dfrac \partial {\partial y} + g_z \dfrac \partial {\partial z} }\mathbf f\) | Definition of Del Operator, Definition of Dot Product | |||||||||||
\(\ds \) | \(=\) | \(\ds g_x \dfrac {\partial f_x} {\partial x} \mathbf i + g_y \dfrac {\partial f_y} {\partial y} \mathbf j + g_z \dfrac {\partial f_z} {\partial z} \mathbf k\) | Definition of Gradient Operator |
and:
\(\ds \paren {\mathbf f \cdot \nabla} \mathbf g\) | \(=\) | \(\ds \paren {f_x \dfrac \partial {\partial x} + f_y \dfrac \partial {\partial y} + f_z \dfrac \partial {\partial z} } \mathbf g\) | Definition of Del Operator, Definition of Dot Product | |||||||||||
\(\ds \) | \(=\) | \(\ds f_x \dfrac {\partial g_x} {\partial x} \mathbf i + f_y \dfrac {\partial g_y} {\partial y} \mathbf j + f_z \dfrac {\partial g_z} {\partial z} \mathbf k\) | Definition of Gradient Operator |
![]() | This needs considerable tedious hard slog to complete it. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Finish}} from the code.If you would welcome a second opinion as to whether your work is correct, add a call to {{Proofread}} the page. |
Sources
- 1968: Murray R. Spiegel: Mathematical Handbook of Formulas and Tables ... (previous) ... (next): $\S 22$: Miscellaneous Formulas involving $\nabla$: $22.42$