Group/Examples/inv x = 1 - x/Lemma 1

From ProofWiki
Jump to navigation Jump to search

Lemma for Group Example: $x^{-1} = 1 - x$

Define $f: \openint 0 1 \to \R$ by:

$\map f x := \map \ln {\dfrac {1 - x} x}$

and $g: \R \to \openint 0 1$:

$\map g z := \dfrac 1 {1 + \exp z}$

Then:

$\map {f \circ g} x = x$


Proof

\(\ds \map {f \circ g} x\) \(=\) \(\ds \map f {\map g x}\)
\(\ds \) \(=\) \(\ds \map \ln {\frac {1 - \map g x} {\map g x} }\)
\(\ds \) \(=\) \(\ds \map \ln {\frac {1 - \frac 1 {1 + \exp x} } {\frac 1 {1 + \exp x} } }\)
\(\ds \) \(=\) \(\ds \map \ln {\frac {1 + \exp x - 1} 1}\) multiplying both numerator and denominator by $1 + \exp x$
\(\ds \) \(=\) \(\ds \map \ln {\exp x}\) simplifying
\(\ds \) \(=\) \(\ds x\) Exponential of Natural Logarithm

$\blacksquare$