Group Action of Symmetric Group
Jump to navigation
Jump to search
Theorem
Let $\N_n$ denote the set $\set {1, 2, \ldots, n}$.
Let $\struct {S_n, \circ}$ denote the symmetric group on $\N_n$.
The mapping $*: S_n \times \N_n \to \N_n$ defined as:
- $\forall \pi \in S_n, \forall n \in \N_n: \pi * n = \map \pi n$
is a group action.
Group Action on Subset of $\N_n$
Let $r \in \N: 0 < r \le n$.
Let $B_r$ denote the set of all subsets of $\N_n$ of cardinality $r$:
- $B_r := \set {S \subseteq \N_n: \card S = r}$
Let $*$ be the mapping $*: S_n \times B_r \to B_r$ defined as:
- $\forall \pi \in S_n, \forall S \in B_r: \pi * B_r = \pi \sqbrk S$
where $\pi \sqbrk S$ denotes the image of $S$ under $\pi$.
Then $*$ is a group action.
Proof
The group action axioms are investigated in turn.
Let $\pi, \rho \in S_n$ and $n \in \N_n$.
Thus:
\(\ds \pi * \paren {\rho * n}\) | \(=\) | \(\ds \pi * \map \rho n\) | Definition of $*$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map \pi {\map \rho n}\) | Definition of $*$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \map {\paren {\pi \circ \rho} } n\) | Definition of Composition of Mappings | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\pi \circ \rho} * n\) | Definition of $*$ |
demonstrating that Group Action Axiom $\text {GA} 1$ holds.
Then:
\(\ds I_{\N_n} * n\) | \(=\) | \(\ds \map {I_{\N_n} } n\) | where $I_{\N_n}$ is the identity mapping on ${\N_n}$ | |||||||||||
\(\ds \) | \(=\) | \(\ds n\) | Definition of Identity Mapping |
demonstrating that Group Action Axiom $\text {GA} 2$ holds.
$\blacksquare$
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 5.5$. Groups acting on sets: Example $102$
- 1971: Allan Clark: Elements of Abstract Algebra ... (previous) ... (next): Chapter $2$: The Sylow Theorems: $\S 53 \alpha$
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): $\S 3.3$: Group actions and coset decompositions: Examples of group actions: $\text{(ii)}$