Group of Reflection Matrices Order 4
Jump to navigation
Jump to search
![]() | It has been suggested that this page or section be merged into Klein Four-Group as Order 2 Matrices. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Mergeto}} from the code. |
Definition
Consider the algebraic structure $S$ of reflection matrices:
- $R_4 = \set {\begin {bmatrix} 1 & 0 \\ 0 & 1 \end {bmatrix}, \begin {bmatrix} 1 & 0 \\ 0 & -1 \end {bmatrix}, \begin {bmatrix} -1 & 0 \\ 0 & 1 \end {bmatrix}, \begin {bmatrix} -1 & 0 \\ 0 & -1 \end {bmatrix} }$
under the operation of (conventional) matrix multiplication.
$R_4$ is the group of reflection matrices of order $4$.
Cayley Table
- $\begin{array}{r|rrrr} \times & r_0 & r_1 & r_2 & r_3 \\ \hline r_0 & r_0 & r_1 & r_2 & r_3 \\ r_1 & r_1 & r_0 & r_3 & r_2 \\ r_2 & r_2 & r_3 & r_0 & r_1 \\ r_3 & r_3 & r_2 & r_1 & r_0 \\ \end{array}$
Also see
Sources
- 1964: Walter Ledermann: Introduction to the Theory of Finite Groups (5th ed.) ... (previous) ... (next): Chapter $\text {I}$: The Group Concept: $\S 7$: Isomorphic Groups: Example $1 \ \text{(b)}$