Group of Reflection Matrices Order 4/Cayley Table
Jump to navigation
Jump to search
Cayley Table for Group of Reflection Matrices Order $4$
Consider the group of reflection matrices order $4$
- $R_4 = \set {\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} }$
$R_4$ can be described completely by showing its Cayley table.
Let:
\(\ds r_0\) | \(=\) | \(\ds \begin {bmatrix} 1 & 0 \\ 0 & 1 \end {bmatrix}\) | ||||||||||||
\(\ds r_1\) | \(=\) | \(\ds \begin {bmatrix} 1 & 0 \\ 0 & -1 \end {bmatrix}\) | ||||||||||||
\(\ds r_2\) | \(=\) | \(\ds \begin {bmatrix} -1 & 0 \\ 0 & 1 \end {bmatrix}\) | ||||||||||||
\(\ds r_3\) | \(=\) | \(\ds \begin {bmatrix} -1 & 0 \\ 0 & -1 \end {bmatrix}\) |
Then we have:
- $\begin{array}{r|rrrr} \times & r_0 & r_1 & r_2 & r_3 \\ \hline r_0 & r_0 & r_1 & r_2 & r_3 \\ r_1 & r_1 & r_0 & r_3 & r_2 \\ r_2 & r_2 & r_3 & r_0 & r_1 \\ r_3 & r_3 & r_2 & r_1 & r_0 \\ \end{array}$