# Group of Reflection Matrices Order 4 is Klein Four-Group

## Theorem

Let $K_4$ denote the Klein $4$-group.

Let $R_4$ be the Group of Reflection Matrices Order $4$.

Then $K_4$ and $R_4$ are isomorphic algebraic structures.

## Proof

Establish the mapping $\phi: K_4 \to R_4$ as follows:

 $\ds \map \phi e$ $=$ $\ds r_0$ $\ds \map \phi a$ $=$ $\ds r_1$ $\ds \map \phi b$ $=$ $\ds r_2$ $\ds \map \phi c$ $=$ $\ds r_3$

From Isomorphism by Cayley Table, the two Cayley tables can be compared by eye to ascertain that $\phi$ is an isomorphism:

### Cayley Table of Klein $4$-Group

The Cayley table for $K_4$ is as follows:

$\begin{array}{c|cccc} & e & a & b & c \\ \hline e & e & a & b & c \\ a & a & e & c & b \\ b & b & c & e & a \\ c & c & b & a & e \\ \end{array}$

### Group of Reflection Matrices Order $4$

The Cayley table for $S$ is as follows:

$\begin{array}{r|rrrr} \times & r_0 & r_1 & r_2 & r_3 \\ \hline r_0 & r_0 & r_1 & r_2 & r_3 \\ r_1 & r_1 & r_0 & r_3 & r_2 \\ r_2 & r_2 & r_3 & r_0 & r_1 \\ r_3 & r_3 & r_2 & r_1 & r_0 \\ \end{array}$