Group of Reflection Matrices Order 4 is Klein Four-Group

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $K_4$ denote the Klein $4$-group.

Let $R_4$ be the Group of Reflection Matrices Order $4$.


Then $K_4$ and $R_4$ are isomorphic algebraic structures.


Proof

Establish the mapping $\phi: K_4 \to R_4$ as follows:

\(\ds \map \phi e\) \(=\) \(\ds r_0\)
\(\ds \map \phi a\) \(=\) \(\ds r_1\)
\(\ds \map \phi b\) \(=\) \(\ds r_2\)
\(\ds \map \phi c\) \(=\) \(\ds r_3\)


From Isomorphism by Cayley Table, the two Cayley tables can be compared by eye to ascertain that $\phi$ is an isomorphism:


Cayley Table of Klein $4$-Group

The Cayley table for $K_4$ is as follows:

$\begin{array}{c|cccc}
 & e & a & b & c \\

\hline e & e & a & b & c \\ a & a & e & c & b \\ b & b & c & e & a \\ c & c & b & a & e \\ \end{array}$


Group of Reflection Matrices Order $4$

The Cayley table for $S$ is as follows:

$\begin{array}{r|rrrr}

\times & r_0 & r_1 & r_2 & r_3 \\ \hline r_0 & r_0 & r_1 & r_2 & r_3 \\ r_1 & r_1 & r_0 & r_3 & r_2 \\ r_2 & r_2 & r_3 & r_0 & r_1 \\ r_3 & r_3 & r_2 & r_1 & r_0 \\ \end{array}$


Sources