Group with Zero Element is Trivial

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group.

Let $\struct {G, \circ}$ have a zero element.


Then $\struct {G, \circ}$ is the trivial group.


Proof

Let $e \in G$ be the identity element of $G$.

Let $z \in G$ be a zero element.

Let $x \in G$ be any arbitrary element of $\struct {G, \circ}$.

Then:

\(\ds x\) \(=\) \(\ds x \circ e\) Group Axiom $\text G 2$: Existence of Identity Element
\(\ds \) \(=\) \(\ds x \circ \paren {z \circ z^{-1} }\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \) \(=\) \(\ds \paren {x \circ z} \circ z^{-1}\) Group Axiom $\text G 1$: Associativity
\(\ds \) \(=\) \(\ds z \circ z^{-1}\) Definition of Zero Element: $x \circ z = z$
\(\ds \) \(=\) \(\ds e\) Group Axiom $\text G 3$: Existence of Inverse Element

So whatever $x \in G$ is, it has to be the identity element of $G$.

So $G$ can contain only that one element, and is therefore the trivial group.

$\blacksquare$


Sources