Homomorphism from Reals to Circle Group

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {\R, +}$ be the additive group of real numbers.

Let $\struct {K, \times}$ be the circle group.

Let $\phi: \struct {\R, +} \to \struct {K, \times}$ be the mapping defined as:

$\forall x \in \R: \map \phi x = e^{i x}$


Then $\phi$ is a (group) homomorphism.


Corollary

Let $\struct {\R, +}$ be the additive group of real numbers.

Let $\struct {C_{\ne 0}, \times}$ be the multiplicative group of complex numbers.

Let $\phi: \struct {\R, +} \to \struct {C_{\ne 0}, \times}$ be the mapping defined as:

$\forall x \in \R: \map \phi x = \cos x + i \sin x$


Then $\phi$ is a (group) homomorphism.


Proof

Let $x, y \in \R$.

Then:

\(\ds \map \phi x \times \map \phi y\) \(=\) \(\ds e^{i x} e^{i y}\)
\(\ds \) \(=\) \(\ds e^{i \paren {x + y} }\)
\(\ds \) \(=\) \(\ds \map \phi {x + y}\)

$\blacksquare$


Sources