Hurwitz's Theorem (Number Theory)/Lemma 2

From ProofWiki
Jump to navigation Jump to search

Lemma

Let $\xi$ be an irrational number.

Let there be $3$ consecutive convergents of the continued fraction to $\xi$.

Then at least one of them, $\dfrac p q$ say, satisfies:

$\size {\xi - \dfrac p q} < \dfrac 1 {\sqrt 5 \, q^2}$


Proof

By definition of simple infinite continued fraction, the partial denominators are strictly positive integers:

$\forall n \in \N_{>0}: a_n > 0$


Let $\dfrac {p_k} {q_k}$ be an arbitrary convergent to $\xi$.

Let:

$\dfrac {q_{n - 1} } {q_n} = b_n$

By definition of numerators and denominators of continued fraction:

$q_{n + 1} = a_{n + 1} q_n + q_{n - 1}$


Then:

\(\ds \dfrac {q_{n + 1} } {q_n}\) \(=\) \(\ds a_{n + 1} + \dfrac {q_{n - 1} } {q_n}\)
\(\ds \) \(=\) \(\ds a_{n + 1} + b_n\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \dfrac 1 {b_{n + 1} }\) \(=\) \(\ds a_{n + 1} + b_n\)
\(\text {(2)}: \quad\) \(\ds \leadsto \ \ \) \(\ds a_{n + 1}\) \(=\) \(\ds \dfrac 1 {b_{n + 1} } - b_n\)


From Difference between Adjacent Convergents of Simple Continued Fraction:

\(\ds \dfrac {p_{n + 1} } {q_{n + 1} } - \dfrac {p_n} {q_n}\) \(=\) \(\ds \dfrac {\paren {-1}^{n + 2} } {q_{n + 1} q_n }\)
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^{n + 2} } {\paren{a_{n + 1} q_n + q_{n - 1} } q_n }\) Definition of Numerators and Denominators of Continued Fraction
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^{n + 2} } {\paren{a_{n + 1} q_n + \dfrac {q_n} {q_n} q_{n - 1} } q_n }\) multiply by $1$
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^{n + 2} } {\paren{a_{n +1 } + \dfrac{q_{n - 1} } {q_n} } q_n^2 }\) move $q_n$ outside
\(\ds \) \(=\) \(\ds \dfrac {\paren {-1}^{n + 2} } {\paren{a_{n + 1} + b_n } q_n^2 }\) $\dfrac {q_{n - 1} } {q_n} = b_n$

Therefore:

\(\text {(3)}: \quad\) \(\ds \size {\dfrac {p_{n + 1} } {q_{n + 1} } - \dfrac {p_n} {q_n} }\) \(=\) \(\ds \dfrac 1 { {q_n}^2} \dfrac 1 {a_{n + 1} + b_n }\)


We aim to show that given $3$ consecutive convergents of the continued fraction to $\xi$, at least one of them satisfies:

$\size {\xi - \dfrac p q} < \dfrac 1 {\sqrt 5 \, q^2}$


Aiming for a contradiction, suppose that $3$ consecutive convergents do NOT satisfy the inequality.

Thus for arbitrary $n$:

\(\text {(4)}: \quad\) \(\ds \size {\xi - \dfrac {p_n} {q_n} }\) \(>\) \(\ds \dfrac 1 {\sqrt 5 \, q_n^2}\)
\(\ds \size {\xi - \dfrac {p_{n + 1} } {q_{n + 1} } }\) \(>\) \(\ds \dfrac 1 {\sqrt 5 \, q_{n + 1}^2}\)


Therefore:

\(\ds \size {\xi - \dfrac {p_n} {q_n} } + \size {\xi - \dfrac {p_{n + 1} } {q_{n + 1} } }\) \(>\) \(\ds \dfrac 1 {\sqrt 5 \, q_n^2} + \dfrac 1 {\sqrt 5 \, q_{n + 1}^2}\)
\(\ds \leadsto \ \ \) \(\ds \size {\dfrac {p_{n + 1} } {q_{n + 1} } - \dfrac {p_n} {q_n} }\) \(>\) \(\ds \dfrac {q_{n + 1}^2 + q_n^2 } {\sqrt 5 \, q_n^2 q_{n + 1}^2 }\)
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 { {q_n}^2} \dfrac 1 {a_{n + 1} + b_n }\) \(>\) \(\ds \dfrac {q_{n + 1}^2 + q_n^2 } {\sqrt 5 \, q_n^2 q_{n + 1}^2 }\) from $(3)$
\(\ds \leadsto \ \ \) \(\ds a_{n + 1} + b_n\) \(<\) \(\ds \dfrac {\sqrt 5 \, q_{n + 1}^2 } {q_{n + 1}^2 + q_n^2 }\)
\(\ds \leadsto \ \ \) \(\ds \dfrac 1 {b_{n + 1} }\) \(<\) \(\ds \dfrac {\sqrt 5 \, q_{n + 1}^2 } {q_{n + 1}^2 + q_n^2 }\) from $(1)$
\(\ds \) \(<\) \(\ds \dfrac {\sqrt 5} {1 + \dfrac {q_n^2} {q_{n + 1}^2 } }\)
\(\ds \) \(<\) \(\ds \dfrac {\sqrt 5} {1 + b_{n + 1}^2 }\)
\(\ds \leadsto \ \ \) \(\ds 1 + b_{n + 1}^2\) \(<\) \(\ds \sqrt 5 \, b_{n + 1}\) multiplying both sides by $b_{n + 1} \paren {1 + b_{n + 1}^2} $
\(\ds \leadsto \ \ \) \(\ds b_{n + 1}^2 - \sqrt 5 \, b_{n + 1} + 1\) \(<\) \(\ds 0\)

Using the Quadratic Formula, we arrive at:

\(\ds b_{n + 1}\) \(=\) \(\ds \dfrac {-\paren {- \sqrt 5 } \pm \sqrt {\paren {- \sqrt 5}^2 - 4 } } 2\) Quadratic Formula
\(\ds \) \(=\) \(\ds \dfrac {\sqrt 5 \pm 1 } 2\)
\(\ds \) \(=\) \(\ds \phi \text { and } \phi - 1\) Definition of Golden Mean

Therefore:

$\phi - 1 < b_{n + 1} < \phi$

Taking reciprocals:

$\phi > \dfrac 1 {b_{n + 1} } > \phi - 1$


Starting with $(4)$ above and replacing $n$ with $n - 1$, and replacing $n + 1$ with $n$, an identical argument can be made for $b_n$.

We now have:

$\phi - 1 < \dfrac 1 {b_{n + 1} } < \phi$

and

$\phi - 1 < b_n < \phi$

And from $(2)$ above:

$a_{n + 1} = \dfrac 1 {b_{n + 1} } - b_n$

Therefore, from $(2)$ and the two inequalities immediately above:

$a_{n + 1} = \dfrac 1 {b_{n + 1} } - b_n < 1$

But this contradicts our premise that the partial denominators are strictly positive integers.

Hence the result by Proof by Contradiction.

$\blacksquare$


Sources