Hyperbolic Cosecant in terms of Cosecant

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $z \in \C$ be a complex number.

Then:

$i \csch z = -\csc \paren {i z}$

where:

$\csc$ denotes the cosecant function
$\csch$ denotes the hyperbolic cosecant
$i$ is the imaginary unit: $i^2 = -1$.


Proof

\(\ds i \csch z\) \(=\) \(\ds \frac i {\sinh z}\) Definition 2 of Hyperbolic Cosecant
\(\ds \) \(=\) \(\ds \frac {-1} {i \sinh z}\) as $i^2 = -1$
\(\ds \) \(=\) \(\ds \frac {-1} {\sin \paren {i z} }\) Hyperbolic Sine in terms of Sine
\(\ds \) \(=\) \(\ds -\csc \paren {i z}\) Definition of Complex Cosecant Function

$\blacksquare$


Also see


Sources