Hyperbolic Cotangent of Complex Number

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

Formulation 1

$\coth \paren {a + b i} = \dfrac {\cosh a \cos b + i \sinh a \sin b} {\sinh a \cos b + i \cosh a \sin b}$


Formulation 2

$\map \coth {a + b i} = \dfrac {1 - i \coth a \cot b} {\coth a - i \cot b}$


Formulation 3

$\map \coth {a + b i} = \dfrac {\coth a + \coth a \cot^2 b} {\coth^2 a + \cot^2 b} + \dfrac {\cot b - \coth^2 a \cot b} {\coth^2 a + \cot^2 b} i$


where:

$\cot$ denotes the real cotangent function
$\sin$ denotes the real sine function
$\cos$ denotes the real cosine function
$\sinh$ denotes the hyperbolic sine function
$\cosh$ denotes the hyperbolic cosine function
$\coth$ denotes the hyperbolic cotangent function.


Also see