Hyperbolic Cotangent of Complex Number/Formulation 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\map \coth {a + b i} = \dfrac {\coth a + \coth a \cot^2 b} {\coth^2 a + \cot^2 b} + \dfrac {\cot b - \coth^2 a \cot b} {\coth^2 a + \cot^2 b} i$

where:

$\cot$ denotes the real cotangent function
$\coth$ denotes the hyperbolic cotangent function.


Proof

\(\ds \map \coth {a + b i}\) \(=\) \(\ds \dfrac {1 - i \coth a \cot b} {\coth a - i \cot b}\) Hyperbolic Cotangent of Complex Number: Formulation 2
\(\ds \) \(=\) \(\ds \dfrac {\paren {1 - i \coth a \cot b} \paren {\coth a + i \cot b} } {\paren {\coth a - i \cot b} \paren {\coth a + i \cot b} }\) multiplying denominator and numerator by $\coth a + i \cot b$
\(\ds \) \(=\) \(\ds \dfrac {\paren {1 - i \coth a \cot b} \paren {\coth a + i \cot b} } {\coth^2 a + \cot^2 b}\) Difference of Two Squares
\(\ds \) \(=\) \(\ds \dfrac {\coth a + i \cot b - i \coth^2 a \cot b + \coth a \cot^2 b} {\coth^2 a + \cot^2 b}\)
\(\ds \) \(=\) \(\ds \dfrac {\coth a + \coth a \cot^2 b} {\coth^2 a + \cot^2 b} + \dfrac {\cot b - \coth^2 a \cot b} {\coth^2 a + \cot^2 b} i\)

$\blacksquare$


Also see