Hyperbolic Sine of Sum

From ProofWiki
Jump to navigation Jump to search

Theorem

$\map \sinh {a + b} = \sinh a \cosh b + \cosh a \sinh b$

where $\sinh$ denotes the hyperbolic sine and $\cosh$ denotes the hyperbolic cosine.


Corollary

$\map \sinh {a - b} = \sinh a \cosh b - \cosh a \sinh b$


Proof

\(\ds \sinh a \cosh b + \cosh a \sinh b\) \(=\) \(\ds \frac {e^a - e^{-a} } 2 \frac {e^b + e^{-b} } 2 + \frac {e^a + e^{-a} } 2 \frac {e^b - e^{-b} } 2\) Definition of Hyperbolic Sine and Definition of Hyperbolic Cosine
\(\ds \) \(=\) \(\ds \frac {e^{a + b} - e^{-a + b} + e^{a - b} - e^{-a - b} } 4\) Exponential of Sum
\(\ds \) \(\) \(\, \ds + \, \) \(\ds \frac {e^{a + b} + e^{-a + b} - e^{a - b} - e^{-a - b} } 4\)
\(\ds \) \(=\) \(\ds \frac {2 e^{a + b} - 2 e^{-\paren {a + b} } } 4\)
\(\ds \) \(=\) \(\ds \frac {e^{a + b} - e^{-\paren {a + b} } } 2\)
\(\ds \) \(=\) \(\ds \map \sinh {a + b}\) Definition of Hyperbolic Sine

$\blacksquare$


Also see


Sources