Hyperbolic Tangent of Complex Number/Formulation 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a$ and $b$ be real numbers.

Let $i$ be the imaginary unit.


Then:

$\tanh \paren {a + b i} = \dfrac {\tanh a + \tanh a \tan^2 b} {1 + \tanh^2 a \tan^2 b} + \dfrac {\tan b - \tanh^2 a \tan b} {1 + \tanh^2 a \tan^2 b} i$

where:

$\tan$ denotes the real tangent function
$\tanh$ denotes the hyperbolic tangent function.


Proof

\(\ds \tan \paren {a + b i}\) \(=\) \(\ds \dfrac {\tanh a + i \tan b} {1 + i \tanh a \tan b}\) Hyperbolic Tangent of Complex Number: Formulation 2
\(\ds \) \(=\) \(\ds \frac {\paren {\tanh a + i \tan b} \paren {1 - i \tanh a \tan b} } {1 + \tanh^2 a \tan^2 b}\) multiplying denominator and numerator by $1 - i \tanh a \tan b$
\(\ds \) \(=\) \(\ds \frac {\tanh a + i \tan b - i \tanh^2 a \tan b + \tanh a \tan^2 b} {1 + \tanh^2 a \tan^2 b}\)
\(\ds \) \(=\) \(\ds \frac {\tanh a + \tanh a \tan^2 b} {1 + \tanh^2 a \tan^2 b} + \frac {\tan b - \tanh^2 a \tan b} {1 + \tanh^2 a \tan^2 b} i\)

$\blacksquare$


Also see