Identities of Boolean Algebra also Zeroes
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \vee, \wedge, \neg}$ be a Boolean algebra, defined as in Definition 1.
Let the identity for $\vee$ be $\bot$ and the identity for $\wedge$ be $\top$.
Then:
- $(1): \quad \forall x \in S: x \vee \top = \top$
- $(2): \quad \forall x \in S: x \wedge \bot = \bot$
That is, $\bot$ is a zero element for $\wedge$, and $\top$ is a zero element for $\vee$.
Proof
Let $x \in S$.
Then:
\(\ds x \vee \top\) | \(=\) | \(\ds \paren {x \vee \top} \wedge \top\) | Boolean Algebra: Axiom $(\text {BA}_1 3)$: $\top$ is the identity of $\wedge$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {x \vee \top} \wedge \paren {x \vee \neg x}\) | Boolean Algebra: Axiom $(\text {BA}_1 4)$: $x \vee x' = \top$ | |||||||||||
\(\ds \) | \(=\) | \(\ds x \vee \paren {\top \wedge x'}\) | Boolean Algebra: Axiom $(\text {BA}_1 2)$: both $\vee$ and $\wedge$ distribute over the other | |||||||||||
\(\ds \) | \(=\) | \(\ds x \vee x'\) | Boolean Algebra: Axiom $(\text {BA}_1 3)$: $\top$ is the identity of $\wedge$ | |||||||||||
\(\ds \) | \(=\) | \(\ds \top\) | Boolean Algebra: Axiom $(\text {BA}_1 4)$ $x \vee x' = \top$ |
So $x \vee \top = \top$.
$\Box$
The result $x \wedge \bot = \bot$ follows from the Duality Principle.
$\blacksquare$
Also known as
These identities can be seen referred to as the null laws.
Sources
- 1964: W.E. Deskins: Abstract Algebra ... (previous) ... (next): $\S 1.5$: Theorem $1.15, \ 1.15 \ \text{(b)}$
- 1998: David Nelson: The Penguin Dictionary of Mathematics (2nd ed.) ... (previous) ... (next): Boolean algebra
- 2008: Paul Halmos and Steven Givant: Introduction to Boolean Algebras ... (previous) ... (next): $\S 2$: Exercise $2$
- 2008: David Nelson: The Penguin Dictionary of Mathematics (4th ed.) ... (previous) ... (next): Boolean algebra