Identity Morphism of Product

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf C$ be a metacategory.

Let $C$ and $D$ be objects of $\mathbf C$, and let $C \times D$ be a binary product for $C$ and $D$.


Then:

$\operatorname{id}_{\paren {C \mathop \times D} } = \operatorname{id}_C \times \operatorname{id}_D$

where $\operatorname{id}$ denotes an identity morphism, and $\times$ signifies a product of morphisms.


Proof

By definition of the product morphism $\operatorname{id}_C \times \operatorname{id}_D$, it is the unique morphism making:

$\quad\quad \begin{xy}\xymatrix@+1em@L+5px{ C \ar[d]_*+{\operatorname{id}_C} & C \times D \ar[l]_*+{\pr_1} \ar[r]^*+{\pr_2} \ar@{-->}[d]^*+{\operatorname{id}_C \times \operatorname{id}_D} & D \ar[d]^*+{\operatorname{id}_D} \\ C & C \times D \ar[l]^*+{\pr_1} \ar[r]_*+{\pr_2} & D }\end{xy}$

a commutative diagram.

It is immediate by the behaviour of identity morphisms that $\operatorname{id}_{\paren {C \mathop \times D} }$ is the unique morphism sought.

$\blacksquare$