Image of Preimage of Subset under Surjection equals Subset
Jump to navigation
Jump to search
Theorem
Let $f: S \to T$ be a surjection.
Then:
- $\forall B \subseteq T: B = \paren {f \circ f^{-1} } \sqbrk B$
where:
- $f \sqbrk B$ denotes the image of $B$ under $f$
- $f^{-1}$ denotes the inverse of $f$
- $f \circ f^{-1}$ denotes composition of $f$ and $f^{-1}$.
Proof
Let $g$ be a surjection.
Let $B \subseteq T$.
Let $b \in B$.
Then:
\(\ds \exists a \in S: \, \) | \(\ds b\) | \(=\) | \(\ds \map f a\) | Definition of Surjection | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds a\) | \(\in\) | \(\ds f^{-1} \sqbrk B\) | Definition of Preimage of Subset under Mapping | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds b\) | \(\in\) | \(\ds f \sqbrk {f^{-1} \sqbrk B}\) | Definition of Image of Subset under Mapping | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds B\) | \(\subseteq\) | \(\ds f \sqbrk {f^{-1} \sqbrk B}\) | Definition of Subset | ||||||||||
\(\ds \leadsto \ \ \) | \(\ds B\) | \(\subseteq\) | \(\ds \paren {f \circ f^{-1} } \sqbrk B\) | Definition of Composition of Mappings |
From Subset of Codomain is Superset of Image of Preimage, we already have that:
- $\paren {f \circ f^{-1} } \sqbrk B \subseteq B$
So:
- $B \subseteq \paren {f \circ f^{-1} } \sqbrk B \subseteq B$
and by definition of set equality:
- $B = \paren {f \circ f^{-1} } \sqbrk B$
$\blacksquare$
Also see
- Subset equals Image of Preimage implies Surjection
- Subset equals Image of Preimage iff Mapping is Surjection
Sources
- 1960: Paul R. Halmos: Naive Set Theory ... (previous) ... (next): $\S 10$: Inverses and Composites
- 1975: T.S. Blyth: Set Theory and Abstract Algebra ... (previous) ... (next): $\S 5$. Induced mappings; composition; injections; surjections; bijections: Theorem $5.8$
- 1975: Bert Mendelson: Introduction to Topology (3rd ed.) ... (previous) ... (next): Chapter $1$: Theory of Sets: $\S 6$: Functions: Exercise $1 \ \text{(d})$
- 2000: James R. Munkres: Topology (2nd ed.) ... (previous) ... (next): $1$: Set Theory and Logic: $\S 2$: Functions