Image of Preimage under Relation is Subset

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR \subseteq S \times T$ be a relation.

Then:

$B \subseteq T \implies \paren {\RR \circ \RR^{-1} } \sqbrk B \subseteq B$

where:

$\RR \sqbrk B$ denotes the image of $B$ under $\RR$
$\RR^{-1} \sqbrk B$ denotes the preimage of $B$ under $\RR$
$\RR \circ \RR^{-1}$ denotes composition of $\RR$ and $\RR^{-1}$.


Proof

Let $B \subseteq T$.

Then:

\(\ds y\) \(\in\) \(\ds \paren {\RR \circ \RR^{-1} } \sqbrk B\)
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds \RR \sqbrk {\RR^{-1} \sqbrk B}\) Definition of Composition of Relations
\(\ds \leadsto \ \ \) \(\ds \exists x \in \RR^{-1} \sqbrk B: \, \) \(\ds \tuple {x, y}\) \(\in\) \(\ds \RR\)
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds B\)

So by definition of subset:

$B \subseteq T \implies \paren {\RR \circ \RR^{-1} }\sqbrk B \subseteq B$

$\blacksquare$


Also see