Image of Union under Mapping/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets.

Let $f: S \to T$ be a mapping.

Let $A$ and $B$ be subsets of $S$.


Then:

$f \sqbrk {A \cup B} = f \sqbrk A \cup f \sqbrk B$


This can be expressed in the language and notation of direct image mappings as:

$\forall A, B \in \powerset S: \map {f^\to} {A \cup B} = \map {f^\to} A \cup \map {f^\to} B$


Proof

First we have:

\(\ds A\) \(\subseteq\) \(\ds A \cup B\) Set is Subset of Union
\(\ds \leadsto \ \ \) \(\ds f \sqbrk A\) \(\subseteq\) \(\ds f \sqbrk {A \cup B}\) Image of Subset under Mapping is Subset of Image


\(\ds B\) \(\subseteq\) \(\ds A \cup B\) Set is Subset of Union
\(\ds \leadsto \ \ \) \(\ds f \sqbrk B\) \(\subseteq\) \(\ds f \sqbrk {A \cup B}\) Image of Subset under Mapping is Subset of Image


\(\ds \leadsto \ \ \) \(\ds f \sqbrk A \cup f \sqbrk B\) \(\subseteq\) \(\ds f \sqbrk {A \cup B}\) Union is Smallest Superset

$\Box$


Then:

\(\ds y\) \(\in\) \(\ds f \sqbrk {A \cup B}\)
\(\ds \leadsto \ \ \) \(\ds \exists x \in A \cup B: \, \) \(\ds y\) \(=\) \(\ds \map f x\) Definition of Image of Subset under Relation
\(\ds \leadsto \ \ \) \(\ds \exists x: x \in A \lor x \in B: \, \) \(\ds y\) \(=\) \(\ds \map f x\) Definition of Set Union
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds f \sqbrk A \lor y \in f \sqbrk B\) Definition of Image of Subset under Relation
\(\ds \leadsto \ \ \) \(\ds y\) \(\in\) \(\ds f \sqbrk A \cup f \sqbrk B\) Definition of Set Union
\(\ds \leadsto \ \ \) \(\ds f \sqbrk {A \cup B}\) \(\subseteq\) \(\ds f \sqbrk A \cup f \sqbrk B\) Definition of Subset

$\Box$


Thus we have:

\(\ds f \sqbrk A \cup f \sqbrk B\) \(\subseteq\) \(\ds f \sqbrk {A \cup B}\)
\(\ds f \sqbrk {A \cup B}\) \(\subseteq\) \(\ds f \sqbrk A \cup f \sqbrk B\)
\(\ds \leadsto \ \ \) \(\ds f \sqbrk A \cup f \sqbrk B\) \(=\) \(\ds f \sqbrk {A \cup B}\) Definition of Set Equality

$\blacksquare$


Sources