Index Laws/Sum of Indices/Monoid

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\struct {S, \circ}$ be a monoid whose identity element is $e$.

For $a \in S$, let $\circ^n a = a^n$ be defined as the $n$th power of $a$:

$a^n = \begin{cases}

e & : n = 0 \\ a^x \circ a & : n = x + 1 \end{cases}$

That is:

$a^n = \underbrace {a \circ a \circ \cdots \circ a}_{n \text{ copies of } a} = \map {\circ^n} a$

while:

$a^0 = e$


Then:

$\forall m, n \in \N: a^{n + m} = a^n \circ a^m$


Proof

Because $\struct {S, \circ}$ is a monoid, it is a fortiori also a semigroup.

From Index Laws for Semigroup: Sum of Indices:

$\forall m, n \in \N_{>0}: \circ^{n + m} a = \paren {\circ^n a} \circ \paren {\circ^m a}$

That is:

$\forall m, n \in \N_{>0}: a^{n + m} = a^n \circ a^m$


It remains to be shown that the result holds for the cases where $m = 0$ and $n = 0$.

Let $n \in \N$:

\(\ds a^{n + 0}\) \(=\) \(\ds a^n\) Integer Addition Identity is Zero
\(\ds \) \(=\) \(\ds a^n \circ e\) Definition of Identity Element
\(\ds \) \(=\) \(\ds a^n \circ a^0\) Definition of $a^0$


Similarly, let $m \in \N$:

\(\ds a^{0 + m}\) \(=\) \(\ds a^m\) Identity Element of Natural Number Addition is Zero
\(\ds \) \(=\) \(\ds e \circ a_m\) Definition of Identity Element
\(\ds \) \(=\) \(\ds a^0 \circ a^m\) Definition of $a^0$

and:

\(\ds a^{0 + 0}\) \(=\) \(\ds a^0\) Identity Element of Natural Number Addition is Zero
\(\ds \) \(=\) \(\ds e\) Definition of $a^0$
\(\ds \) \(=\) \(\ds e \circ e\) Definition of Identity Element
\(\ds \) \(=\) \(\ds a^0 \circ a^0\) Definition of $a^0$


Thus:

$a^{n + m} = a^n \circ a^m$

holds for $n = 0$ and $m = 0$.

Thus:

$\forall m, n \in \N: a^{n + m} = a^n \circ a^m$

$\blacksquare$


Also see


Source of Name

The name index laws originates from the name index to describe the exponent $y$ in the power $x^y$.


Sources