Index Laws/Sum of Indices/Notation
< Index Laws | Sum of Indices
Jump to navigation
Jump to search
Notation for Index Laws: Sum of Indices
Let $\struct {S, \circ}$ be a semigroup.
Let $a \in S$.
Let $a^n$ be defined as the power of an element of a magma:
- $a^n = \begin{cases} a : & n = 1 \\ a^x \circ a : & n = x + 1 \end{cases}$
that is:
- $a^n = \underbrace {a \circ a \circ \cdots \circ a}_{n \text{ copies of } a} = \map {\circ^n} a$
Recall the index law for sum of indices:
- $\circ^{n + m} a = \paren {\circ^n a} \circ \paren {\circ^m a}$
This result can be expressed:
- $a^{n + m} = a^n \circ a^m$
When additive notation $\struct {S, +}$ is used, the following is a common convention:
- $\left({n + m}\right) a = n a + m a$
or:
- $\forall m, n \in \N_{>0}: \paren {n + m} \cdot a = n \cdot a + m \cdot a$
Source of Name
The name index laws originates from the name index to describe the exponent $y$ in the power $x^y$.
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 4.2$. Commutative and associative operations: Example $69$