Index Laws for Monoids/Negative Index
Jump to navigation
Jump to search
Theorem
Let $\struct {S, \circ}$ be a monoid whose identity is $e_S$.
Let $a \in S$ be invertible for $\circ$.
Let $n \in \N$.
Let $a^n = \map {\circ^n} a$ be defined as the power of an element of a monoid:
- $a^n = \begin{cases} e_S : & n = 0 \\ a^x \circ a : & n = x + 1 \end{cases}$
that is:
- $a^n = \underbrace {a \circ a \circ \cdots \circ a}_{n \text { instances} } = \map {\circ^n} a$
For each $n \in \N$ we define:
- $a^{-n} = \paren {a^{-1} }^n$
Then:
- $\forall n \in \Z: \paren {a^n}^{-1} = a^{-n} = \paren {a^{-1} }^n$
Proof
We have $a^0 = e$ so it follows trivially that $a^{-0} = \paren {a^{-1} }^0$.
From the general inverse of product, we have:
- $\paren {a_1 \circ a_2 \circ \cdots \circ a_n}^{-1} = a_n^{-1} \circ \cdots \circ a_2^{-1} \circ a_1^{-1}$
where $a_1, a_2, \ldots, a_n \in S$ are all invertible for $\circ$.
Hence we have:
- $a_1, a_2, \ldots, a_n = a$
and we have that:
- $a^n$ is invertible for all $n \in \N$
- $\forall n \in \N: \paren {a^n}^{-1} = \paren {a^{-1} }^n$
From the above:
- $a^{-n} = \paren {a^{-1} }^n$
Thus:
\(\ds \paren {a^{-n} }^{-1}\) | \(=\) | \(\ds \paren {\paren {a^{-1} }^n}^{-1}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {a^{-1} }^{-1} }^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds a^{-\paren {-n} }\) |
Similarly, if $a$ is invertible then $a^{-1}$ is also invertible.
So we also have:
- $\circ^{-n} \paren {a^{-1} } = \circ^n \paren {\paren {a^{-1} }^{-1} }$
Thus:
\(\ds a^{-\paren {-n} }\) | \(=\) | \(\ds \paren {\paren {a^{-1} }^{-1} }^n\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \paren {a^{-1} }^{-n}\) |
Thus the result holds for all $n \in \Z$.
$\blacksquare$
Source of Name
The name index laws originates from the name index to describe the exponent $y$ in the power $x^y$.
Sources
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {IV}$: Rings and Fields: $20$. The Integers: Theorem $20.11 \ (1)$
- 1982: P.M. Cohn: Algebra Volume 1 (2nd ed.) ... (previous) ... (next): $\S 3.1$: Monoids: Exercise $(8)$