Index Laws/Sum of Indices/Semigroup
Theorem
Let $\struct {S, \circ}$ be a semigroup.
For $a \in S$, let $\circ^n a = a^n$ be defined as the $n$th power of $a$:
- $a^n = \begin{cases} a & : n = 1 \\ a^x \circ a & : n = x + 1 \end{cases}$
That is:
- $a^n = \underbrace {a \circ a \circ \cdots \circ a}_{n \text{ copies of } a} = \circ^n \paren a$
Then:
- $\forall m, n \in \N_{>0}: a^{n + m} = a^n \circ a^m$
Proof
Let $a \in S$.
Because $\struct {S, \circ}$ is a semigroup, $\circ$ is associative on $S$.
The proof proceeds by the Principle of Mathematical Induction.
Let $\map P m$ be the proposition:
- $\forall n \in \N_{>0}: a^{n + m} = a^n \circ a^m$
that is:
- $\forall n \in \N_{>0}: \circ^{n + m} a = \paren {\circ^n a} \circ \paren {\circ^m a}$
Basis for the Induction
\(\ds \forall n \in \N_{>0}: \, \) | \(\ds \circ^{n + 1} a\) | \(=\) | \(\ds \paren {\circ^n a} \circ a\) | Definition of $\circ^n a: \N_{>0} \to S$ | ||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\circ^n a} \circ \paren {\circ^1 a}\) | Definition of $\circ^n a$ for $n = 1$ |
So $\map P 1$ holds.
This is our basis for the induction.
Induction Hypothesis
Now we need to show that, if $\map P k$ is true, where $k \ge 1$, then it logically follows that $\map P {k + 1}$ is true.
So this is our induction hypothesis:
- $\circ^{n + k} a = \paren {\circ^n a} \circ \paren {\circ^k a}$
It is then to be shown that:
- $\circ^{n + \paren {k + 1} } a = \paren {\circ^n a} \circ \paren {\circ^{k + 1} a}$
Induction Step
This is our induction step:
\(\ds \circ^{n + \paren {k + 1} } a\) | \(=\) | \(\ds \circ^{\paren {n + k} + 1} a\) | Natural Number Addition is Associative | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\circ^{n + k} a} \circ \paren {\circ^1 a}\) | Basis for the Induction | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\paren {\circ^n a} \circ \paren {\circ^k a} } \circ \paren {\circ^1 a}\) | Induction Hypothesis | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\circ^n a} \circ \paren {\paren {\circ^k a} \circ \paren {\circ^1 a} }\) | $\circ$ is associative | |||||||||||
\(\ds \) | \(=\) | \(\ds \paren {\circ^n a} \circ \paren {\circ^{k + 1} a}\) | Basis for the Induction |
So $\map P {k + 1}$ is true.
So by the Principle of Mathematical Induction, this result is true for all $m, n \in \N_{>0}$:
- $\forall m, n \in \N_{>0}: \circ^{n + m} a = \paren {\circ^n a} \circ \paren {\circ^m a}$
or:
- $\forall m, n \in \N_{>0}: a^{n + m} = a^n \circ a^m$
$\blacksquare$
Notation
Let $a^n$ be defined as the power of an element of a magma:
- $a^n = \begin{cases} a : & n = 1 \\ a^x \circ a : & n = x + 1 \end{cases}$
that is:
- $a^n = \underbrace {a \circ a \circ \cdots \circ a}_{n \text{ copies of } a} = \map {\circ^n} a$
Recall the index law for sum of indices:
- $\circ^{n + m} a = \paren {\circ^n a} \circ \paren {\circ^m a}$
This result can be expressed:
- $a^{n + m} = a^n \circ a^m$
When additive notation $\struct {S, +}$ is used, the following is a common convention:
- $\left({n + m}\right) a = n a + m a$
or:
- $\forall m, n \in \N_{>0}: \paren {n + m} \cdot a = n \cdot a + m \cdot a$
Source of Name
The name index laws originates from the name index to describe the exponent $y$ in the power $x^y$.
Sources
- 1965: J.A. Green: Sets and Groups ... (previous) ... (next): $\S 4.2$. Commutative and associative operations
- 1965: Seth Warner: Modern Algebra ... (previous) ... (next): Chapter $\text {III}$: The Natural Numbers: $\S 16$: The Natural Numbers: Theorem $16.8 \ (1)$
- 1978: John S. Rose: A Course on Group Theory ... (previous) ... (next): $2$: Examples of Groups and Homomorphisms: $2.1$ Definition
- 1978: Thomas A. Whitelaw: An Introduction to Abstract Algebra ... (previous) ... (next): $\S 30.1$ Powers of an element in a semigroup: $\text{(i)}$
- 1996: John F. Humphreys: A Course in Group Theory ... (previous) ... (next): Chapter $3$: Elementary consequences of the definitions: Remark