Infima of two Real Sets

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $S$ and $T$ be sets of real numbers.

Let $S$ and $T$ admit infima.


Then:

$\inf S \ge \inf T \iff \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: s + \epsilon > t$


Proof

Let:

$-S = \set {-s: s \in S}$
$-T = \set {-t: t \in T}$

Observe that:

$s \in S \iff -s \in -S$
$t \in T \iff -t \in -T$


We know that $\inf S$ and $\inf T$ exist.

The expression $\inf S \ge \inf T$ exists as $\inf S$ and $\inf T$ exist.

In other words, for fixed sets $S$ and $T$, $\inf S \ge \inf T$ is either true or false.


We find:

\(\ds \inf S\) \(\ge\) \(\ds \inf T\)
\(\ds \leadstoandfrom \ \ \) \(\ds -\sup -S\) \(\ge\) \(\ds -\sup -T\) by the lemma
\(\ds \leadstoandfrom \ \ \) \(\ds \sup -S\) \(\le\) \(\ds \sup -T\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall \epsilon \in \R_{>0}: \forall x \in -S: \exists y \in -T: \, \) \(\ds x\) \(<\) \(\ds y + \epsilon\) Suprema of two Real Sets
\(\ds \leadstoandfrom \ \ \) \(\ds \forall \epsilon \in \R_{>0}: \forall s \in S: \set {x: = -s}: \exists t \in T: \paren {y: = -t}: \, \) \(\ds x\) \(<\) \(\ds y + \epsilon\) as $s \in S \iff -s \in −S$ and $t \in T \iff -t \in −T$
\(\ds \leadstoandfrom \ \ \) \(\ds \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: \, \) \(\ds -s\) \(<\) \(\ds -t + \epsilon\)
\(\ds \leadstoandfrom \ \ \) \(\ds \forall \epsilon \in \R_{>0}: \forall s \in S: \exists t \in T: \, \) \(\ds s + \epsilon\) \(>\) \(\ds t\)


Lemma

Let $X$ be a set of real numbers.

Let $X$ admit an infimum.

Let $-X = \set {-x: x \in X}$.


Then:

$ \sup -X = -\inf X$


Proof

Because $X$ admits an infimum, it follows that it is not empty.

The result follows by Negative of Infimum is Supremum of Negatives.

$\Box$

$\blacksquare$


Also see