Infinite Product of Product of Sequence of n plus alpha over Sequence of n plus beta

From ProofWiki
Jump to navigation Jump to search



Theorem

$\ds \prod_{n \mathop \ge 1} \dfrac {\paren {n + \alpha_1} \cdots \paren {n + \alpha_k} } {\paren {n + \beta_1} \cdots \paren {n + \beta_k} } = \dfrac {\map \Gamma {1 + \beta_1} \cdots \map \Gamma {1 + \beta_k} } {\map \Gamma {1 + \alpha_1} \cdots \map \Gamma {1 + \alpha_k} }$

where:

$\alpha_1 + \cdots + \alpha_k = \beta_1 + \cdots + \beta_k$
none of the $\beta$s is a negative integer.


Proof

First we note that if any of the $\beta$s is a negative integer, the left hand side would have $0$ as its denominator, and so would be undefined.

We have from the Euler form of the Gamma function that:

$\map \Gamma {1 + \beta_i} = \ds \lim_{m \mathop \to \infty} \dfrac {m^{1 + \beta_i} m!} {\paren {1 + \beta_i} \paren {2 + \beta_i} \cdots \paren {m + 1 + \beta_i} }$

and so the right hand side can be written as:

\(\ds \) \(\) \(\ds \dfrac {\paren {\ds \lim_{m \mathop \to \infty} \dfrac {m^{1 + \beta_1} m^{1 + \beta_2} \cdots m^{1 + \beta_k} \paren {m!}^k} {\ds \prod_{1 \mathop \le n \mathop \le m + 1} \paren {n + \beta_1} \paren {n + \beta_2} \cdots \paren {n + \beta_k} } } } {\paren {\ds \lim_{m \mathop \to \infty} \dfrac {m^{1 + \alpha_1} m^{1 + \alpha_2} \cdots m^{1 + \alpha_k} \paren {m!}^k} {\ds \prod_{1 \mathop \le n \mathop \le m + 1} \paren {n + \alpha_1} \paren {n + \alpha_2} \cdots \paren {n + \alpha_k} } } }\)
\(\ds \) \(=\) \(\ds \lim_{m \mathop \to \infty} \dfrac {\ds \prod_{1 \mathop \le n \mathop \le m + 1} \paren {n + \alpha_1} \paren {n + \alpha_2} \cdots \paren {n + \alpha_k} m^k m^{\beta_1 + \beta_2 + \cdots + \beta_k} \paren {m!}^k} {\ds \prod_{1 \mathop \le n \mathop \le m + 1} \paren {n + \beta_1} \paren {n + \beta_2} \cdots \paren {n + \beta_k} m^k m^{\alpha_1 + \alpha_2 + \cdots + \alpha_k} \paren {m!}^k}\)
\(\ds \) \(=\) \(\ds \lim_{m \mathop \to \infty} \dfrac {\ds \prod_{1 \mathop \le n \mathop \le m + 1} \paren {n + \alpha_1} \paren {n + \alpha_2} \cdots \paren {n + \alpha_k} m^{\beta_1 + \beta_2 + \cdots + \beta_k} } {\ds \prod_{1 \mathop \le n \mathop \le m + 1} \paren {n + \beta_1} \paren {n + \beta_2} \cdots \paren {n + \beta_k} m^{\alpha_1 + \alpha_2 + \cdots + \alpha_k} }\) simplifying slightly
\(\ds \) \(=\) \(\ds \lim_{m \mathop \to \infty} \ds \prod_{1 \mathop \le n \mathop \le m + 1} \dfrac {\paren {n + \alpha_1} \paren {n + \alpha_2} \cdots \paren {n + \alpha_k} } {\paren {n + \beta_1} \paren {n + \beta_2} \cdots \paren {n + \beta_k} }\) as $\alpha_1 + \cdots + \alpha_k = \beta_1 + \cdots + \beta_k$
\(\ds \) \(=\) \(\ds \prod_{n \mathop \ge 1} \dfrac {\paren {n + \alpha_1} \paren {n + \alpha_2} \cdots \paren {n + \alpha_k} } {\paren {n + \beta_1} \paren {n + \beta_2} \cdots \paren {n + \beta_k} }\)

$\blacksquare$


Sources