Inner Product/Examples/Lebesgue 2-Space
Jump to navigation
Jump to search
![]() | It has been suggested that this page or section be merged into Definition:L-2 Inner Product. To discuss this page in more detail, feel free to use the talk page. When this work has been completed, you may remove this instance of {{Mergeto}} from the code. |
Example of Inner Product
Let $\tuple {X, \Sigma, \mu}$ be a measure space.
Let $\map {L^2} \mu$ be the Lebesgue $2$-space of $\mu$.
Let $\innerprod \cdot \cdot: \map {L^2} \mu \times \map {L^2} \mu \to \C$ be the mapping defined by:
- $\ds \innerprod f g = \int f \, \overline g \rd \mu$
Then $\innerprod \cdot \cdot$ is an inner product on $\map {L^2} \mu$.
Proof
First of all, by Hölder's Inequality for Integrals with $p = q = 2$, it follows that:
- $\ds \int f \, \overline g \rd \mu$
is defined.
Now checking the axioms for an inner product in turn:
$(1)$ Conjugate Symmetry
\(\ds \innerprod f g\) | \(=\) | \(\ds \int f \, \overline g \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \overline {\overline f \, g} \rd \mu\) | Complex Conjugation is Involution | |||||||||||
\(\ds \) | \(=\) | \(\ds \overline {\int g \, \overline f \rd \mu}\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \overline {\innerprod g f}\) |
$\Box$
$(2)$ Sesquilinearity
\(\ds \innerprod {\lambda f + g} h\) | \(=\) | \(\ds \int \paren {\lambda f + g} \overline h \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \paren {\lambda f \, \overline h} + \paren {g \, \overline h} \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \lambda f \, \overline h \rd \mu + \int g \, \overline h \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \int f \, \overline h \rd \mu + \int g \, \overline h \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \lambda \innerprod f h + \innerprod g h\) |
$\Box$
$(3)$ Non-Negative Definiteness
\(\ds \innerprod f f\) | \(=\) | \(\ds \int f \, \overline f \rd \mu\) | ||||||||||||
\(\ds \) | \(=\) | \(\ds \int \cmod f^2 \rd \mu\) | ||||||||||||
\(\ds \) | \(\in\) | \(\ds \R_{\ge 0}\) | Integral of Positive Function is Positive |
$\Box$
$(4)$ Positivity
Suppose that $\innerprod f f = 0$.
That is:
- $\ds \int \cmod f^2 \rd \mu = 0$
Hence:
- $\ds \int \cmod {f - 0}^2 \rd \mu = 0$
which is to say that $f = 0$ in $\map {L^2} \mu$ by definition of Lebesgue space.
$\Box$
Having verified all the axioms, we conclude $\innerprod \cdot \cdot$ is an inner product.
$\blacksquare$
Sources
- 1990: John B. Conway: A Course in Functional Analysis (2nd ed.) ... (previous) ... (next): $\text{I}$ Hilbert Spaces: $\S 1.$ Elementary Properties and Examples: Example $1.3$