Inradius of Triangle in Terms of Exradii

From ProofWiki
Jump to navigation Jump to search



Theorem

Let $\triangle ABC$ be a triangle whose sides are $a$, $b$ and $c$ opposite vertices $A$, $B$ and $C$ respectively.

Then we have the following relation:

$\dfrac 1 r = \dfrac 1 {\rho_a} + \dfrac 1 {\rho_b} + \dfrac 1 {\rho_c}$

where:

$r$ is the inradius
$\rho_a$, $\rho_b$ and $\rho_c$ are the exradii of $\triangle ABC$ with respect to $a$, $b$ and $c$ respectively.


Proof

The area $\AA$ of $\triangle ABC$ is given by:

\(\ds \AA\) \(=\) \(\ds \rho_a \paren {s - a}\) Area of Triangle in Terms of Exradius
\(\ds \leadsto \ \ \) \(\ds \frac 1 {\rho_a}\) \(=\) \(\ds \frac {s - a} \AA\) rearranging

Similarly:

\(\ds \quad \quad \frac 1 {\rho_b}\) \(=\) \(\ds \frac {s - b} \AA\)
\(\ds \frac 1 {\rho_c}\) \(=\) \(\ds \frac {s - c} \AA\)

Hence:

\(\ds \) \(\) \(\ds \frac 1 {\rho_a} + \frac 1 {\rho_b} + \frac 1 {\rho_c}\)
\(\ds \) \(=\) \(\ds \frac {s - a} \AA + \frac {s - b} \AA + \frac {s - c} \AA\)
\(\ds \) \(=\) \(\ds \frac {3 s - a - b - c} \AA\)
\(\ds \) \(=\) \(\ds \frac {3 s - 2 s} \AA\) Definition of Semiperimeter
\(\ds \) \(=\) \(\ds \frac s {r s}\) Area of Triangle in Terms of Inradius
\(\ds \) \(=\) \(\ds \frac 1 r\)

$\blacksquare$