Integer Coprime to Factors is Coprime to Whole/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a, b, c \in \Z$ be integers.

Let:

$a \perp b$
$a \perp c$

where $\perp$ denotes coprimality.

Then:

$a \perp b c$


In the words of Euclid:

If two numbers be prime to any number, their product also will be prime to the same.

(The Elements: Book $\text{VII}$: Proposition $24$)


Proof

Let $a, b, c \in \Z$ such that $a$ is coprime to each of $b$ and $c$.

We have:

\(\ds a\) \(\perp\) \(\ds b\)
\(\text {(1)}: \quad\) \(\ds \leadsto \ \ \) \(\ds \exists x, y \in \Z: \, \) \(\ds 1\) \(=\) \(\ds a x + b y\) Integer Combination of Coprime Integers
\(\ds a\) \(\perp\) \(\ds c\)
\(\ds \leadsto \ \ \) \(\ds \exists u, v \in \Z: \, \) \(\ds 1\) \(=\) \(\ds a u + c v\) Integer Combination of Coprime Integers
\(\ds \) \(=\) \(\ds \paren {a x + b y} \paren {a u + c v}\) from $(1)$
\(\ds \) \(=\) \(\ds a^2 u x + a c v x + a b y u + b c y v\) multiplying out
\(\ds \) \(=\) \(\ds a \paren {a u x + c v x + b y u} + b c \paren {y v}\) rearranging
\(\ds \leadsto \ \ \) \(\ds a\) \(\perp\) \(\ds b c\) Integer Combination of Coprime Integers

$\blacksquare$


Sources