Integer to Power of p-1 over 2 Modulo p

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $a \in \Z$.

Let $p$ be an odd prime.

Let $b = a^{\frac {\paren {p - 1} } 2}$.


Then one of the following cases holds:

$b \bmod p = 0$

which happens exactly when $a \equiv 0 \pmod p$, or:

$b \bmod p = 1$

or:

$b \bmod p = p - 1$

where:

$b \bmod p$ denotes the modulo operation
$x \equiv y \pmod p$ denotes that $x$ is congruent modulo $p$ to $y$.


Proof

By definition of congruence modulo $p$:

$\forall x, y \in \R: x \equiv y \pmod p \iff x \bmod p = y \bmod p$


We have that:

$b = a^{\frac{\paren {p - 1} } 2}$

and so:

$b^2 = a^{p - 1}$


Let $a \equiv 0 \pmod p$.

Then by definition of congruence modulo $p$:

$p \divides a$

and so:

$p \divides a^{\frac{\paren {p - 1} } 2}$

where $\divides$ denotes divisibility.


Thus by definition of congruence modulo $p$:

$b \equiv 0 \pmod p$

and so:

$b \bmod p = 0$

$\Box$


Otherwise, from Fermat's Little Theorem:

$b^2 \equiv 1 \pmod p$

That is:

$b^2 - 1 \equiv 0 \pmod p$


From Difference of Two Squares:

$b^2 - 1 = \paren {b + 1} \paren {b - 1}$

So either:

$p \divides b + 1$

or:

$p \divides b - 1$


Aiming for a contradiction, suppose both $p \divides b + 1$ and $p \divides b - 1$.

Then by Modulo Subtraction is Well-Defined:

$p \divides \paren {b + 1} - \paren {b - 1} = 2$

But $p$ is an odd prime.

So it cannot be the case that $p \divides 2$.

From this contradiction it follows that

Note that $p$ cannot divide both $b + 1$ and $b - 1$.


So either:

\(\ds \paren {b - 1}\) \(\equiv\) \(\ds 0\) \(\ds \pmod p\)
\(\ds \leadsto \ \ \) \(\ds b\) \(\equiv\) \(\ds 1\) \(\ds \pmod p\) Modulo Addition is Well-Defined


or:

\(\ds \paren {b + 1}\) \(\equiv\) \(\ds 0\) \(\ds \pmod p\)
\(\ds \leadsto \ \ \) \(\ds b\) \(\equiv\) \(\ds -1\) \(\ds \pmod p\) Modulo Subtraction is Well-Defined
\(\ds \) \(\equiv\) \(\ds p - 1\) \(\ds \pmod p\) Negative Number is Congruent to Modulus minus Number

Hence the result.

$\blacksquare$


Also see


Sources