Integrable Function with Zero Integral on Sub-Sigma-Algebra is A.E. Zero/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {X, \Sigma, \mu}$ be a measure space.

Let $\GG$ be a sub-$\sigma$-algebra of $\Sigma$.


Let $f : X \to \overline \R$ be a $\GG$-integrable function.

Suppose that, for all $G \in \GG$:

$\ds \int_G f \rd \mu = 0$


Then $f = 0$ $\mu$-almost everywhere.


Proof

In view of Measurable Function Zero A.E. iff Absolute Value has Zero Integral, we shall show:

$\ds \int \size f \rd \mu = 0$

Since $f$ is $\GG$-measurable:

$G_+ := \set { x \in X : f(x) > 0 } \in \GG$

and:

$G_- := \set { x \in X : f(x) \le 0 } \in \GG$

On the one hand:

\(\ds \int f^+ \rd \mu\) \(=\) \(\ds \int f \cdot \chi _{ G_+ } \rd \mu\) $f^+$ is positive part of $f$
\(\ds \) \(=\) \(\ds \int _{ G_+ } f \rd \mu\)
\(\ds \) \(=\) \(\ds 0\) by hypothesis

On the other hand, from $f \cdot \chi _{ G_- } \le 0$ follows:

\(\ds \paren {f \cdot \chi _{ G_- } } ^+\) \(=\) \(\ds 0\)

and:

\(\ds \paren {f \cdot \chi _{ G_- } } ^-\) \(=\) \(\ds - \paren {f \cdot \chi _{ G_- } }\)
\(\ds \) \(=\) \(\ds \paren { -f } \cdot \chi _{ G_- }\)
\(\ds \) \(=\) \(\ds f^-\) $f^-$ is negative part of $f$

Thus:

\(\ds \int _{ G_- } f \rd \mu\) \(=\) \(\ds \int f \cdot \chi _{ G_- } \rd \mu\)
\(\ds \) \(=\) \(\ds \int \paren {f \cdot \chi _{ G_- } } ^+ \rd \mu - \int \paren {f \cdot \chi _{ G_- } } ^- \rd \mu\) integral of $f \cdot \chi _{ G_- }$
\(\ds \) \(=\) \(\ds - \int f ^- \rd \mu\)

which implies:

\(\ds \int f ^- \rd \mu\) \(=\) \(\ds - \int f \cdot \chi _{ G_- } \rd \mu\)
\(\ds \) \(=\) \(\ds - \int _{ G_- } f \rd \mu\)
\(\ds \) \(=\) \(\ds 0\) by hypothesis

Therefore:

$\ds \int \size f \rd \mu = \int f^+ \rd \mu + \int f^- \rd \mu = 0$

$\blacksquare$