Integral Representation of Dirichlet Beta Function in terms of Gamma Function

From ProofWiki
Jump to navigation Jump to search

Theorem

$\ds \map \beta s = \frac 1 {\map \Gamma s} \int_0^\infty \frac {x^{s - 1} e^{-x} } {1 + e^{-2 x} } \rd x$

where:

$\beta$ denotes the Dirichlet beta function
$\Gamma$ denotes the gamma function
$s$ is a complex number with $\map \Re s > 0$.


Proof

We have, by Laplace Transform of Power:

$\ds \frac {\paren {-1}^n \map \Gamma s} {\paren {2 n + 1}^s} = \paren {-1}^n \int_0^\infty x^{s - 1} e^{-\paren {2 n + 1} x} \rd x$

for $\map \Re s > 0$.


Summing, we have:

\(\ds \map \Gamma s \sum_{n \mathop = 0}^N \frac {\paren {-1}^n} {\paren {2 n + 1}^s}\) \(=\) \(\ds \sum_{n \mathop = 0}^N \paren {-1}^n \int_0^\infty x^{s - 1} e^{-\paren {2 n + 1} x} \rd x\)
\(\ds \) \(=\) \(\ds \int_0^\infty x^{s - 1} \sum_{n \mathop = 0}^N \paren {-1}^n e^{-\paren {2 n + 1} x} \rd x\) Linear Combination of Definite Integrals
\(\ds \) \(=\) \(\ds \int_0^\infty x^{s - 1} e^{-x} \paren {\sum_{n \mathop = 0}^N \paren {-e^{-2 x} }^n} \rd x\)


We have:

\(\ds \lim_{N \mathop \to \infty} \paren {\map \Gamma s \sum_{n \mathop = 0}^N \frac {\paren {-1}^n} {\paren {2 n + 1}^s} }\) \(=\) \(\ds \map \Gamma s \lim_{N \mathop \to \infty} \paren {\sum_{n \mathop = 0}^N \frac {\paren {-1}^n} {\paren {2 n + 1}^s} }\) Multiple Rule for Limits of Complex Functions
\(\ds \) \(=\) \(\ds \map \Gamma s \map \beta s\) Definition of Dirichlet Beta Function

Therefore:

\(\ds \map \Gamma s \map \beta s\) \(=\) \(\ds \lim_{N \mathop \to \infty} \paren {\int_0^\infty x^{s - 1} e^{-x} \paren {\sum_{n \mathop = 0}^N \paren {-e^{-2 x} }^n} \rd x}\)
\(\ds \) \(=\) \(\ds \int_0^\infty x^{s - 1} e^{-x} \paren {\lim_{N \mathop \to \infty} \sum_{n \mathop = 0}^N \paren {-e^{-2 x} }^n} \rd x\) Lebesgue's Dominated Convergence Theorem
\(\ds \) \(=\) \(\ds \int_0^\infty x^{s - 1} e^{-x} \paren {\sum_{n \mathop = 0}^\infty \paren {-e^{-2 x} }^n} \rd x\)
\(\ds \) \(=\) \(\ds \int_0^\infty \frac {x^{s - 1} e^{-x} } {1 - \paren {-e^{- 2x} } } \rd x\) Sum of Infinite Geometric Sequence
\(\ds \) \(=\) \(\ds \int_0^\infty \frac {x^{s - 1} e^{-x} } {1 + e^{-2 x} } \rd x\)

giving:

$\ds \map \beta s = \frac 1 {\map \Gamma s} \int_0^\infty \frac {x^{s - 1} e^{-x} } {1 + e^{-2 x} } \rd x$

$\blacksquare$