Interior is Subset of Exterior of Exterior

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $T$ be a topological space.

Let $H \subseteq T$.


Let $H^e$ denote the exterior of $H$, and let $H^\circ$ denote the interior of $H$.

Then:

$H^\circ \subseteq \paren {H^e}^e$


Proof

\(\ds \paren {H^e}^e\) \(=\) \(\ds \paren {T \setminus H^e}^\circ\) Definition of Exterior
\(\ds \) \(=\) \(\ds \paren {T \setminus \paren {T \setminus H^-} }^\circ\) Equivalence of Definitions of Exterior
\(\ds \) \(=\) \(\ds \paren {H^-}^\circ\) Relative Complement of Relative Complement
\(\ds \) \(\supseteq\) \(\ds H^\circ\) Interior is Subset of Interior of Closure

$\blacksquare$


Also see


Sources