Intersection of Events is Event

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\EE$ be an experiment with a probability space $\struct {\Omega, \Sigma, \Pr}$.


The event space $\Sigma$ of $\EE$ has the property that:

$A, B \in \Sigma \implies A \cap B \in \Sigma$

That is, the intersection of two events is also an event in the event space.


Proof

\(\ds A, B\) \(\in\) \(\ds \Sigma\)
\(\ds \leadsto \ \ \) \(\ds \Omega \setminus A, \ \Omega \setminus B\) \(\in\) \(\ds \Sigma\) Definition of Event Space: Axiom $(\text {ES} 2)$
\(\ds \leadsto \ \ \) \(\ds \paren {\Omega \setminus A} \cup \paren {\Omega \setminus A}\) \(\in\) \(\ds \Sigma\) Definition of Event Space: Axiom $(\text {ES} 3)$
\(\ds \leadsto \ \ \) \(\ds \Omega \setminus \paren {A \cap B}\) \(\in\) \(\ds \Sigma\) De Morgan's Laws: Difference with Intersection
\(\ds \leadsto \ \ \) \(\ds \Omega \setminus \paren {\Omega \setminus \paren {A \cap B} }\) \(\in\) \(\ds \Sigma\) Definition of Event Space: Axiom $(\text {ES} 2)$
\(\ds \leadsto \ \ \) \(\ds A \cap B\) \(\in\) \(\ds \Sigma\) Relative Complement of Relative Complement

$\blacksquare$


Also see


Sources