Inverse Element is Power of Order Less 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $G$ be a group whose identity is $e$.

Let $g \in G$ be of finite order.

Then:

$\order g = n \implies g^{n - 1} = g^{-1}$


Proof

\(\ds \order g\) \(=\) \(\ds n\)
\(\ds \leadsto \ \ \) \(\ds g^n\) \(=\) \(\ds e\)
\(\ds \leadsto \ \ \) \(\ds g^n g^{-1}\) \(=\) \(\ds e g^{-1}\)
\(\ds \leadsto \ \ \) \(\ds g^{n - 1}\) \(=\) \(\ds g^{-1}\)

$\blacksquare$


Sources