Inverse Image Mapping Induced by Projection

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\family {S_i}_{i \mathop \in I}$ be a family of sets.

Let $\ds S = \prod_{i \mathop \in I} S_i$ be the Cartesian product of $\family {S_i}_{i \mathop \in I}$.

For each $j \in I$, let $\pr_j: S \to S_j$ denote the $j$-th projection.

For each $j \in I$ let $\pr_j^\gets: \powerset {S_i} \to \powerset S$ denote the inverse image mapping induced by $\pr_j$


Then for all $j \in I$, $\pr_j^\gets$ is the mapping defined by:

$\ds \forall T \subseteq S_i: \map {\pr_j^\gets} T = \prod_{i \mathop \in I} T_i$

where:

$T_i = \begin {cases} T & i = j \\ S_i & i \ne j \end {cases}$


Proof

Let $j \in I$.

Let $T \subseteq S_j$.

Let $\family {T_i}_{i \mathop \in I}$ be the family of sets defined by:

$T_i = \begin {cases} T & : i = j \\ S_i & : i \ne j \end {cases}$

Then:

\(\ds \map {\pr_j^\gets} T\) \(=\) \(\ds \set {x \in S: \map {\pr_j} x \in T}\) Definition of Inverse Image Mapping of Mapping
\(\ds \) \(=\) \(\ds \set {x \in S: x_j \in T}\) Definition of Projection on Family of Sets
\(\ds \) \(=\) \(\ds \set {x \in S: x_j \in T, \forall i \ne j: x_i \in S_i}\) as $x \in S \implies \paren {\forall i \in I: x_i \in S_i}$
\(\ds \) \(=\) \(\ds \set {x \in S: \forall i \in I: x_i \in T_i}\) Definition of $T_i$ for all $i \in I$
\(\ds \) \(=\) \(\ds \prod_{i \mathop \in I} T_i\) Definition of Cartesian Product of Family

$\blacksquare$