Inverse Mapping/Examples/x^2-4x+5

From ProofWiki
Jump to navigation Jump to search

Examples of Inverse Mappings

Let $f: \R \to \R$ be the real function defined as:

$\forall x \in \R: f \paren x = x^2 - 4 x + 5$


Consider the following bijective restrictions of $f$:

\(\ds f_1: \hointl \gets 2\) \(\to\) \(\ds \hointr 1 \to\)
\(\ds f_2: \hointr 2 \to\) \(\to\) \(\ds \hointr 1 \to\)


The inverse of $f_1$ is:

$\forall y \in \hointr 1 \to: \map {f_1^{-1} } y = 2 - \sqrt {y - 1}$


The inverse of $f_2$ is:

$\forall y \in \hointr 1 \to: \map {f_2^{-1} } y = 2 + \sqrt {y - 1}$


Proof

Let $y = \map f x$.

Then:

\(\ds y\) \(=\) \(\ds x^2 - 4 x + 5\)
\(\ds \leadsto \ \ \) \(\ds y\) \(=\) \(\ds \paren {\paren {x - 2}^2 - 4} + 5\)
\(\ds \) \(=\) \(\ds \paren {x - 2}^2 + 1\)
\(\ds \leadsto \ \ \) \(\ds y - 1\) \(=\) \(\ds \paren {x - 2}^2\)
\(\ds \leadsto \ \ \) \(\ds x - 2\) \(=\) \(\ds \pm \sqrt {y - 1}\)
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds 2 \pm \sqrt {y - 1}\)


$f_1$ is the bijective restriction of $f$ where $x \le 2$.

Hence the negative square root is taken of $\sqrt {y - 1}$, and so:

$\map {f_1^{-1} } y = 2 - \sqrt {y - 1}$


$f_2$ is the bijective restriction of $f$ where $x \le 2$.

Hence the positive square root is taken of $\sqrt {y - 1}$, and so:

$\map {f_2^{-1} } y = 2 + \sqrt {y - 1}$

$\blacksquare$


Sources