Inverse Relation Functor is Contravariant Functor

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf{Rel}$ be the category of relations.

Let $C: \mathbf{Rel} \to \mathbf{Rel}$ be the inverse relation functor.


Then $C$ is a contravariant functor.


Proof

For any set $X$. we have:

\(\ds C \operatorname{id}_X\) \(=\) \(\ds \operatorname{id}_X^{-1}\) Definition of Inverse Relation Functor
\(\ds \) \(=\) \(\ds \set {\tuple {x, x}: \tuple {x, x} \in \operatorname{id}_X}\) Definition of Inverse Relation
\(\ds \) \(=\) \(\ds \operatorname{id}_X\)


For any two relations $\RR \subseteq X \times Y$ and $\SS \subseteq Y \times Z$, we have:

\(\ds C \paren {\SS \circ \RR}\) \(=\) \(\ds \paren {\SS \circ \RR}^{-1}\) Definition of Inverse Relation Functor
\(\ds \) \(=\) \(\ds \RR^{-1} \circ \SS^{-1}\) Inverse of Composite Relation
\(\ds \) \(=\) \(\ds C \RR \circ C \SS\) Definition of Inverse Relation Functor


Hence $C$ is shown to be a contravariant functor.

$\blacksquare$


Sources