Inverse Relation Properties

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR$ be a relation on a set $S$.

If $\RR$ has any of the properties:

Reflexive
Antireflexive
Non-reflexive
Symmetric
Asymmetric
Antisymmetric
Non-symmetric
Transitive
Antitransitive
Non-transitive

then its inverse $\RR^{-1}$ has the same properties.


Proof

Reflexivity

\(\ds x\) \(\in\) \(\ds S\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x, x}\) \(\in\) \(\ds \RR\) Definition of Reflexive Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, x}\) \(\in\) \(\ds \RR^{-1}\) Definition of Inverse Relation

Hence the result by definition of reflexive relation.

$\blacksquare$


Antireflexivity

\(\ds x\) \(\in\) \(\ds S\)
\(\ds \leadsto \ \ \) \(\ds \tuple {x, x}\) \(\notin\) \(\ds \RR\) Definition of Antireflexive Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, x}\) \(\notin\) \(\ds \RR^{-1}\) Definition of Inverse Relation

Hence the result by definition of antireflexive relation.

$\blacksquare$


Non-Reflexivity

Let $\RR$ be non-reflexive.


Then:

\(\ds \exists x \in S: \, \) \(\ds \tuple {x, x}\) \(\in\) \(\ds \RR\) as $\RR$ is not antireflexive
\(\ds \leadsto \ \ \) \(\ds \exists x \in S: \, \) \(\ds \tuple {x, x}\) \(\in\) \(\ds \RR^{-1}\) Definition of Inverse Relation

Thus $\RR^{-1}$ is not antireflexive.


Also:

\(\ds \exists x \in S: \, \) \(\ds \tuple {x, x}\) \(\notin\) \(\ds \RR\) as $\RR$ is not reflexive
\(\ds \leadsto \ \ \) \(\ds \exists x \in S: \, \) \(\ds \tuple {x, x}\) \(\notin\) \(\ds \RR^{-1}\) Definition of Inverse Relation

Thus $\RR^{-1}$ is not reflexive.


Hence the result, by definition of non-reflexive relation.

$\blacksquare$


Symmetry

Let $\RR$ be symmetric.

Then from Relation equals Inverse iff Symmetric it follows that $\RR^{-1}$ is also symmetric.

$\blacksquare$


Asymmetry

Let $\RR$ be asymmetric.

Let $\tuple {x, y} \in \RR^{-1}$.

Then:

\(\ds \tuple {x, y}\) \(\in\) \(\ds \RR^{-1}\)
\(\ds \leadsto \ \ \) \(\ds \tuple {y, x}\) \(\in\) \(\ds \RR\) Inverse of Inverse Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {x, y}\) \(\notin\) \(\ds \RR\) Definition of Asymmetric Relation
\(\ds \leadsto \ \ \) \(\ds \tuple {y, x}\) \(\notin\) \(\ds \RR^{-1}\) Definition of Inverse Relation

Thus it follows that $\RR^{-1}$ is also asymmetric.

$\blacksquare$


Antisymmetry

Let $\RR$ be antisymmetric.

Then:

$\tuple {x, y} \land \tuple {y, x} \in \RR \implies x = y$

It follows that:

$\tuple {y, x} \land \tuple {x, y} \in \RR^{-1} \implies x = y$

Thus it follows that $\RR^{-1}$ is also antisymmetric.

$\blacksquare$


Non-Symmetry

Let $\RR$ be non-symmetric.

Then:

$\exists \tuple {x_1, y_1} \in \RR \implies \tuple {y_1, x_1} \in \RR$

and also:

$\exists \tuple {x_2, y_2} \in \RR \implies \tuple {y_2, x_2} \notin \RR$

Thus:

$\exists \tuple {y_1, x_1} \in \RR^{-1} \implies \tuple {x_1, y_1} \in \RR^{-1}$

and also:

$\exists \tuple {y_2, x_2} \in \RR^{-1} \implies \tuple {x_2, y_2} \notin \RR^{-1}$

and so $\RR^{-1}$ is non-symmetric.

$\blacksquare$


Transitivity

Let $\RR$ be a relation on a set $S$.

Let $\RR$ be transitive.


Then its inverse $\RR^{-1}$ is also transitive.


Antitransitivity

Let $\RR$ be antitransitive.

Then:

$\tuple {x, y}, \tuple {y, z} \in \RR \implies \tuple {x, z} \notin \RR$

Thus:

$\tuple {y, x}, \tuple {z, y} \in \RR^{-1} \implies \tuple {z, x} \notin \RR^{-1}$

and so $\RR^{-1}$ is antitransitive.

$\blacksquare$


Non-Transitivity

Let $\RR$ be non-transitive.

Then:

$\exists x_1, y_1, z_1 \in S: \tuple {x_1, y_1}, \tuple {y_1, z_1} \in \RR, \tuple {x_1, z_1} \in \RR$
$\exists x_2, y_2, z_2 \in S: \tuple {x_2, y_2}, \tuple {y_2, z_2} \in \RR, \tuple {x_2, z_2} \notin \RR$


So:

$\exists x_1, y_1, z_1 \in S: \tuple {y_1, x_1}, \tuple {z_1, y_1} \in \RR^{-1}, \tuple {z_1, x_1} \in \RR^{-1}$
$\exists x_2, y_2, z_2 \in S: \tuple {y_2, x_2}, \tuple {z_2, y_2} \in \RR^{-1}, \tuple {z_2, x_2} \notin \RR^{-1}$

So $\RR^{-1}$ is non-transitive.

$\blacksquare$