Inverse of Plane Rotation Matrix

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\mathbf R$ be the matrix associated with a rotation of the plane about the origin through an angle of $\alpha$:

$\mathbf R = \begin{bmatrix}

\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$


Then its inverse matrix $\mathbf R^{-1}$ is:

$\mathbf R^{-1} = \begin{bmatrix}

\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$


Proof

Let:

$\mathbf A = \begin{bmatrix}

\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$


Consider $\mathbf R \mathbf A$:

\(\ds \mathbf R \mathbf A\) \(=\) \(\ds \begin{bmatrix}

\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}\)

\(\ds \) \(=\) \(\ds \begin{bmatrix}

\map \cos {\alpha} \map \cos {\alpha} + \map \sin {\alpha} \map \sin {\alpha} & \map \cos {\alpha} \map \sin {\alpha} - \map \sin {\alpha} \map \cos {\alpha} \\ \map \sin {\alpha} \map \cos {\alpha} - \map \cos {\alpha} \map \sin {\alpha} & \map \sin {\alpha} \map \sin {\alpha} + \map \cos {\alpha} \map \cos {\alpha} \end{bmatrix}\)

Definition of Matrix Product (Conventional)
\(\ds \) \(=\) \(\ds \begin{bmatrix}

\cos^2\alpha + \sin^2\alpha & 0 \\ 0 & \sin^2\alpha + \cos^2\alpha \end{bmatrix}\)

\(\ds \) \(=\) \(\ds \begin{bmatrix}

1 & 0 \\ 0 & 1 \end{bmatrix}\)

Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \mathbf {I_2}\) Definition of Unit Matrix

$\Box$


Now consider $\mathbf A \mathbf R$:

\(\ds \mathbf A \mathbf R\) \(=\) \(\ds \begin{bmatrix}

\cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}\)

\(\ds \) \(=\) \(\ds \begin{bmatrix}

\map \cos {\alpha} \map \cos {\alpha} + \map \sin {\alpha} \map \sin {\alpha} & -\map \cos {\alpha} \map \sin {\alpha} + \map \sin {\alpha} \map \cos {\alpha} \\ -\map \sin {\alpha} \map \cos {\alpha} + \map \cos {\alpha} \map \sin {\alpha} & \map \sin {\alpha} \map \sin {\alpha} + \map \cos {\alpha} \map \cos {\alpha} \end{bmatrix}\)

Definition of Matrix Product (Conventional)
\(\ds \) \(=\) \(\ds \begin{bmatrix}

\cos^2\alpha + \sin^2\alpha & 0 \\ 0 & \sin^2\alpha + \cos^2\alpha \end{bmatrix}\)

\(\ds \) \(=\) \(\ds \begin{bmatrix}

1 & 0 \\ 0 & 1 \end{bmatrix}\)

Sum of Squares of Sine and Cosine
\(\ds \) \(=\) \(\ds \mathbf {I_2}\) Definition of Unit Matrix

$\Box$


Hence, by the definition of the inverse matrix, $\mathbf A$ is the inverse matrix of $\mathbf R$.

$\blacksquare$