Inverse of Product of Subsets of Group/Proof 1

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {G, \circ}$ be a group.

Let $X, Y \subseteq G$.


Then:

$\paren {X \circ Y}^{-1} = Y^{-1} \circ X^{-1}$

where $X^{-1}$ is the inverse of $X$.


Proof

First, note that:

\(\ds \) \(\) \(\ds x \in X, y \in Y\)
\(\ds \) \(\leadsto\) \(\ds x^{-1} \in X^{-1}, y^{-1} \in Y^{-1}\) Definition of Inverse of Subset of Group
\(\ds \) \(\leadsto\) \(\ds y^{-1} \circ x^{-1} \in Y^{-1} \circ X^{-1}\) Definition of Subset Product


Now:

\(\ds x \circ y\) \(\in\) \(\ds X \circ Y\) Definition of Subset Product
\(\ds \leadsto \ \ \) \(\ds \paren {x \circ y}^{-1}\) \(\in\) \(\ds \paren {X \circ Y}^{-1}\) Definition of Inverse of Subset of Group
\(\ds \leadsto \ \ \) \(\ds y^{-1} \circ x^{-1}\) \(\in\) \(\ds \paren {X \circ Y}^{-1}\) Inverse of Group Product
\(\ds \leadsto \ \ \) \(\ds Y^{-1} \circ X^{-1}\) \(\subseteq\) \(\ds \paren {X \circ Y}^{-1}\) Definition of Subset


By a similar argument we see that $\paren {X \circ Y}^{-1} \subseteq Y^{-1} \circ X^{-1}$.


Hence the result.

$\blacksquare$