Inverse of Right-Total Relation is Left-Total

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\RR \subseteq S \times T$ be a relation on $S \times T$.

Let $\RR^{-1} \subseteq T \times S$ be the inverse of $\RR$.


Then:

$\RR$ is right-total if and only if $\RR^{-1}$ is left-total.


Proof

Sufficient Condition

Let $\RR$ be right-total.

Then by definition:

$\forall t \in T: \exists s \in S: \tuple {s, t} \in \RR$

By definition of the inverse of $\RR$, it follows that:

$\forall t \in T: \exists s \in S: \tuple {t, s} \in \RR^{-1}$

So by definition $\RR^{-1}$ is left-total.

$\Box$


Necessary Condition

Let $\RR^{-1}$ is left-total.

Then by definition:

$\forall t \in T: \exists s \in S: \tuple {t, s} \in \RR^{-1}$

and so:

$\forall t \in T: \exists s \in S: \tuple {s, t} \in \RR$

So by definition $\RR$ is right-total.

$\blacksquare$