Invertible Element containing Identity in Power Structure

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {S, \circ}$ be a magma.

Let identity element $e \in S$ be an identity element of $\struct {S, \circ}$.

Let $\struct {\powerset S, \circ_\PP}$ be the power structure of $\struct {S, \circ}$.


Let $X \subseteq S$ such that:

$e \in X$
$X$ is invertible for $\circ_PP$.


Then $X = \set e$.


Proof

Let $X \subseteq S$ be invertible for $\circ_PP$ and such that $e \in X$.

From Identity Element for Power Structure, $\struct {\powerset S, \circ_\PP}$ has an identity element $J = \set e$.

We have:

\(\text {(1)}: \quad\) \(\ds \exists Y \in \powerset S: \, \) \(\ds X \circ_\PP Y\) \(=\) \(\ds J\) Definition of Invertible Element: here $Y$ is the inverse of $X$
\(\ds \leadsto \ \ \) \(\ds \set {x \circ y: x \in X, y \in Y}\) \(=\) \(\ds \set e\) Definition of Operation Induced on Power Set, Definition of $J$
\(\ds \leadsto \ \ \) \(\ds \forall y \in Y: \, \) \(\ds e \circ y\) \(=\) \(\ds e\) applying the above to $e$ as an element of $X$
\(\ds \leadsto \ \ \) \(\ds \forall y \in Y: \, \) \(\ds y\) \(=\) \(\ds e\) Definition of Identity Element
\(\ds \leadsto \ \ \) \(\ds Y\) \(=\) \(\ds \set e\)
\(\ds \leadsto \ \ \) \(\ds X \circ_\PP \set e\) \(=\) \(\ds \set e\) substituting for $Y$ and $J$ in $(1)$
\(\ds \leadsto \ \ \) \(\ds \forall x \in X: \, \) \(\ds x\) \(=\) \(\ds e\) Definition of Identity Element
\(\ds \leadsto \ \ \) \(\ds X\) \(=\) \(\ds \set e\)

$\blacksquare$


Sources