Isometrically Isomorphic Non-Archimedean Division Rings

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\struct {R, \norm {\,\cdot\,}_R}$ and $\struct {S, \norm {\,\cdot\,}_S}$ be normed division rings.

Let $\phi:R \to S$ be an isometric isomorphism.


Then:

$\norm {\,\cdot\,}_R$ is a non-archimedean norm if and only if $\norm {\,\cdot\,}_S$ is a non-archimedean norm.


Proof

Necessary Condition

Let $\norm {\,\cdot\,}_R$ be a non-archimedean norm.

Then for all $x,y \in R$:

\(\ds \norm {x + y}_S\) \(=\) \(\ds \norm {\map \phi {\map {\phi^{-1} } x} + \map \phi {\map {\phi^{-1} } y} }_S\) $\phi$ is a bijection
\(\ds \) \(=\) \(\ds \norm {\map {\phi^{-1} } x + \map {\phi^{-1} } y}_R\) $\phi$ is an isometry.
\(\ds \) \(\le\) \(\ds \max \set {\norm {\map {\phi^{-1} } x}_R, \norm {\map {\phi^{-1} } y}_R}\) $\norm {\,\cdot\,}_R$ is non-archimedean.
\(\ds \) \(=\) \(\ds \max \set {\norm {\map \phi {\map {\phi^{-1} } x} }_S, \norm {\map \phi {\map {\phi^{-1} } y} }_S}\) $\phi$ is an isometry.
\(\ds \) \(=\) \(\ds \max \set {\norm x_S, \norm y_S}\) $\phi$ is a bijection.

$\Box$


Sufficient Condition

Let $\norm {\, \cdot \,}_S$ be a non-archimedean norm.

By Inverse of Isometric Isomorphism, $\phi^{-1}: S \to R$ is an isometric isomorphism.

By the necessary condition, $\norm {\, \cdot \,}_R$ is non-archimedean.

$\blacksquare$