Kernel is Trivial iff Monomorphism/Group

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\phi: \struct {S, \circ} \to \struct {T, *}$ be a group homomorphism.

Let $\map \ker \phi$ be the kernel of $\phi$.


Then $\phi$ is a group monomorphism if and only if $\map \ker \phi$ is trivial.


Proof

Necessary Condition

Let $\phi: \struct {S, \circ} \to \struct {T, *}$ be a group monomorphism.

By Homomorphism to Group Preserves Identity, $e_S \in \map \ker \phi$.

If $\map \ker \phi$ contained another element $s \ne e_S$, then $\map \phi s = \map \phi {e_S} = e_T$ and $\phi$ would not be injective, thus not be a group monomorphism.

So $\map \ker \phi$ can contain only one element, and that must be $e_S$, which is therefore the trivial subgroup of $S$.

$\Box$


Sufficient Condition

Now suppose $\map \ker \phi = \set {e_S}$.

Then, for any $x, y \in S$:

\(\ds \map \phi x\) \(=\) \(\ds \map \phi y\)
\(\ds \leadsto \ \ \) \(\ds \map \phi x * \paren {\map \phi y}^{-1}\) \(=\) \(\ds \map \phi y * \paren {\map \phi y}^{-1}\) Group Axiom $\text G 3$: Existence of Inverse Element
\(\ds \leadsto \ \ \) \(\ds \map \phi {x \circ y^{-1} }\) \(=\) \(\ds e_T\) Definition of Morphism Property
\(\ds \leadsto \ \ \) \(\ds x \circ y^{-1}\) \(\in\) \(\ds \map \ker \phi\) Definition of Kernel of Group Homomorphism
\(\ds \leadsto \ \ \) \(\ds x \circ y^{-1}\) \(=\) \(\ds e_S\) by hypothesis
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds e_S \circ y\) Group Axiom $\text G 2$: Existence of Identity Element
\(\ds \leadsto \ \ \) \(\ds x\) \(=\) \(\ds y\) Definition of Identity Element


Thus $\phi$ is injective, and therefore a group monomorphism.

$\blacksquare$


Sources