Krattenthaler's Identity

From ProofWiki
Jump to navigation Jump to search

Theorem

$\begin{vmatrix}

\paren {x + q_2} \paren {x + q_3} & \paren {x + p_1} \paren {x + q_3} & \paren {x + p_1} \paren {x + p_2} \\ \paren {y + q_2} \paren {y + q_3} & \paren {y + p_1} \paren {y + q_3} & \paren {y + p_1} \paren {y + p_2} \\ \paren {z + q_2} \paren {z + q_3} & \paren {z + p_1} \paren {z + q_3} & \paren {z + p_1} \paren {z + p_2} \end{vmatrix} = \paren {x - y} \paren {x - z} \paren {y - z} \paren {p_1 - q_2} \paren {p_1 - q_3} \paren {p_2 - q_3}$

where $\size {\, \cdot \,}$ denotes determinant.


Proof

\(\ds \) \(\) \(\ds \begin{vmatrix}

\paren {x + q_2} \paren {x + q_3} & \paren {x + p_1} \paren {x + q_3} & \paren {x + p_1} \paren {x + p_2} \\ \paren {y + q_2} \paren {y + q_3} & \paren {y + p_1} \paren {y + q_3} & \paren {y + p_1} \paren {y + p_2} \\ \paren {z + q_2} \paren {z + q_3} & \paren {z + p_1} \paren {z + q_3} & \paren {z + p_1} \paren {z + p_2} \end{vmatrix}\)

\(\ds \) \(=\) \(\ds \begin{vmatrix}

\paren {x + q_2} \paren {x + q_3} & \paren {p_1 - q_2} \paren {x + q_3} & \paren {p_1 - q_3} \paren {x + p_2} \\ \paren {y + q_2} \paren {y + q_3} & \paren {p_1 - q_2} \paren {y + q_3} & \paren {p_1 - q_3} \paren {y + p_2} \\ \paren {z + q_2} \paren {z + q_3} & \paren {p_1 - q_2} \paren {z + q_3} & \paren {p_1 - q_3} \paren {z + p_2} \end{vmatrix}\)

Multiple of Row Added to Row of Determinant
\(\ds \) \(=\) \(\ds \paren {p_1 - q_2} \paren {p_1 - q_3} \begin{vmatrix}

\paren {x + q_2} \paren {x + q_3} & x + q_3 & x + p_2 \\ \paren {y + q_2} \paren {y + q_3} & y + q_3 & y + p_2 \\ \paren {z + q_2} \paren {z + q_3} & z + q_3 & z + p_2 \end{vmatrix}\)

Determinant with Row Multiplied by Constant
\(\ds \) \(=\) \(\ds \paren {p_1 - q_2} \paren {p_1 - q_3} \begin{vmatrix}

x \paren {x + q_3} & x + q_3 & p_2 - q_3 \\ y \paren {y + q_3} & y + q_3 & p_2 - q_3 \\ z \paren {z + q_3} & z + q_3 & p_2 - q_3 \end{vmatrix}\)

Multiple of Row Added to Row of Determinant
\(\ds \) \(=\) \(\ds \paren {p_1 - q_2} \paren {p_1 - q_3} \paren {p_2 - q_3} \begin{vmatrix}

x \paren {x + q_3} & x + q_3 & 1\\ y \paren {y + q_3} & y + q_3 & 1\\ z \paren {z + q_3} & z + q_3 & 1 \end{vmatrix}\)

Determinant with Row Multiplied by Constant
\(\ds \) \(=\) \(\ds \paren {p_1 - q_2} \paren {p_1 - q_3} \paren {p_2 - q_3} \begin{vmatrix}

x^2 & x & 1\\ y^2 & y & 1\\ z^2 & z & 1 \end{vmatrix}\)

Multiple of Row Added to Row of Determinant
\(\ds \) \(=\) \(\ds \paren {p_1 - q_2} \paren {p_1 - q_3} \paren {p_2 - q_3} \paren {x - y} \paren {y - z} \paren {x - z}\) Value of Vandermonde Determinant

$\blacksquare$


Source of Name

This entry was named for Christian Friedrich Krattenthaler.


Sources