L'Hôpital's Rule/Proof 2

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $f$ and $g$ be real functions which are differentiable on the open interval $\openint a b$.

Let:

$\forall x \in \openint a b: \map {g'} x \ne 0$

where $g'$ denotes the derivative of $g$ with respect to $x$.

Let:

$\ds \lim_{x \mathop \to a^+} \map f x = \lim_{x \mathop \to a^+} \map g x = 0$


Then:

$\ds \lim_{x \mathop \to a^+} \frac {\map f x} {\map g x} = \lim_{x \mathop \to a^+} \frac {\map {f'} x} {\map {g'} x}$

provided that the second limit exists.


Proof

Take the Cauchy Mean Value Theorem with $b = x$:

$\exists \xi \in \openint a x: \dfrac {\map {f'} \xi} {\map {g'} \xi} = \dfrac {\map f x - \map f a} {\map g x - \map g a}$


Then if $\map f a = \map g a = 0$ we have:

$\exists \xi \in \openint a x: \dfrac {\map {f'} \xi} {\map {g'} \xi} = \dfrac {\map f x} {\map g x}$


Note that $\xi$ depends on $x$; that is, different values of $x$ may require different values of $\xi$ to make the above statement valid.

It follows from Limit of Function in Interval that $\xi \to a$ as $x \to a$.

Also, $\xi \ne a$ when $x > a$.

So from Hypothesis $2$ of Limit of Composite Function, it follows that:

$\ds \lim_{x \mathop \to a^+} \dfrac {\map {f'} \xi} {\map {g'} \xi} = \lim_{x \mathop \to a^+} \dfrac {\map {f'} x} {\map {g'} x}$

Hence the result.

$\blacksquare$


Sources