Laplace Transform of Cosine/Proof 3

From ProofWiki
Jump to navigation Jump to search

Theorem

Let $\cos$ be the real cosine function.

Let $\laptrans f$ denote the Laplace transform of the real function $f$.


Then:

$\laptrans {\cos a t} = \dfrac s {s^2 + a^2}$

where $a \in \R_{>0}$ is constant, and $\map \Re s > a$.


Proof

\(\ds \laptrans {\cos a t}\) \(=\) \(\ds \laptrans {\frac {e^{i a t} + e^{-i a t} } 2}\) Euler's Cosine Identity
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\laptrans {e^{i a t} } + \laptrans {e^{-i a t} } }\) Linear Combination of Laplace Transforms
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\frac 1 {s - i a} + \frac 1 {s + i a} }\) Laplace Transform of Exponential
\(\ds \) \(=\) \(\ds \frac 1 2 \paren {\frac {s + i a + s - i a} {s^2 + a^2} }\) simplifying
\(\ds \) \(=\) \(\ds \frac s {s^2 + a^2}\) simplifying

$\blacksquare$